Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
2.
Mol Ther Methods Clin Dev ; 26: 441-458, 2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36092361

RESUMO

Despite many promising results obtained in previous preclinical studies, the clinical development of encapsulated cell technology (ECT) for the delivery of therapeutic proteins from macrocapsules is still limited, mainly due to the lack of an allogeneic cell line compatible with therapeutic application in humans. In our work, we generated an immortalized human myoblast cell line specifically tailored for macroencapsulation. In the present report, we characterized the immortalized myoblasts and described the engineering process required for the delivery of functional therapeutic proteins including a cytokine, monoclonal antibodies and a viral antigen. We observed that, when encapsulated, the novel myoblast cell line can be efficiently frozen, stored, and thawed, which limits the challenge imposed by the manufacture and supply of encapsulated cell-based therapeutic products. Our results suggest that this versatile allogeneic cell line represents the next step toward a broader development and therapeutic use of ECT.

3.
Development ; 147(19)2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-32764029

RESUMO

Erythropoietin (EPO), the hypoxia-inducible hematopoietic hormone, has well-established neuroprotective/neurotrophic roles in the developing central nervous system and the therapeutic potential of EPO has been widely explored in clinical studies for the treatment of perinatal hypoxic brain lesion, as well as prematurity. Here, we reveal that both EPO and Epo receptor (EPOR) are expressed in the developing rat somatosensory cortex during radial migration and laminar positioning of granular and supragranular neurons. Experimental deregulation of EPO signaling using genetic approaches results in aberrant migration, as well as permanent neuronal misplacement leading to abnormal network activity and protracted sensory behavioral deficits. We identify ERK as the downstream effector of the EPO signaling pathway for neuronal migration. These findings reveal a crucial role for endogenous EPO signaling in neuronal migration, and offer important insights for understanding how the temporary deregulation of EPO could result in migration defects that lead to abnormal behavior in the adult.


Assuntos
Eritropoetina/metabolismo , Neocórtex/citologia , Neocórtex/metabolismo , Animais , Movimento Celular/genética , Movimento Celular/fisiologia , Eletroporação , Eritropoetina/genética , Potenciais Somatossensoriais Evocados/genética , Potenciais Somatossensoriais Evocados/fisiologia , Feminino , Células HEK293 , Humanos , Imuno-Histoquímica , Hibridização In Situ , Masculino , Gravidez , Ratos , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
4.
Cereb Cortex ; 30(8): 4708-4725, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32266929

RESUMO

Transplantation of appropriate neuronal precursors after injury is a promising strategy to reconstruct cortical circuits, but the efficiency of these approaches remains limited. Here, we applied targeted apoptosis to selectively ablate layer II/III pyramidal neurons in the rat juvenile cerebral cortex and attempted to replace lost neurons with their appropriate embryonic precursors by transplantation. We demonstrate that grafted precursors do not migrate to replace lost neurons but form vascularized clusters establishing reciprocal synaptic contacts with host networks and show functional integration. These heterotopic neuronal clusters significantly enhance the activity of the host circuits without causing epileptic seizures and attenuate the apoptotic injury-induced functional deficits in electrophysiological and behavioral tests. Chemogenetic activation of grafted neurons further improved functional recovery, and the persistence of the graft was necessary for maintaining restored functions in adult animals. Thus, implanting neuronal precursors capable to form synaptically integrated neuronal clusters combined with activation-based approaches represents a useful strategy for helping long-term functional recovery following brain injury.


Assuntos
Lesões Encefálicas , Células-Tronco Embrionárias/transplante , Células-Tronco Neurais/transplante , Recuperação de Função Fisiológica/fisiologia , Transplante de Células-Tronco/métodos , Animais , Ratos , Ratos Wistar
5.
Cell Rep ; 27(5): 1487-1502.e6, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-31042475

RESUMO

During development, the precise implementation of molecular programs is a key determinant of proper dendritic development. Here, we demonstrate that canonical Wnt signaling is active in dendritic bundle-forming layer II pyramidal neurons of the rat retrosplenial cortex during dendritic branching and spine formation. Transient downregulation of canonical Wnt transcriptional activity during the early postnatal period irreversibly reduces dendritic arbor architecture, leading to long-lasting deficits in spatial exploration and/or navigation and spatial memory in the adult. During the late phase of dendritogenesis, canonical Wnt-dependent transcription regulates spine formation and maturation. We identify neurotrophin-3 as canonical Wnt target gene in regulating dendritogenesis. Our findings demonstrate how temporary imbalance in canonical Wnt signaling during specific time windows can result in irreversible dendritic defects, leading to abnormal behavior in the adult.


Assuntos
Dendritos/metabolismo , Neurogênese , Células Piramidais/metabolismo , Memória Espacial , Via de Sinalização Wnt , Animais , Células Cultivadas , Feminino , Células HEK293 , Humanos , Masculino , Neurotrofina 3/genética , Neurotrofina 3/metabolismo , Células Piramidais/citologia , Células Piramidais/fisiologia , Ratos , Ratos Wistar
6.
Mol Ther Nucleic Acids ; 14: 351-363, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30665184

RESUMO

Synthetic microRNA (miRNA) minigenes (SMIGs) have a major potential for molecular therapy; however, their optimal architecture still needs to be determined. We have previously optimized the stem structure of miRNA hairpins for efficient gene knockdown. Here, we investigate the overall architecture of SMIGs driven by polymerase II-dependent promoters. When miRNA hairpins were placed directly behind the promoter, gene knockdown was inefficient as compared with constructs containing an intercalated sequence ("spacer"). Spacer sequence was relevant for knockdown efficiency and concatenation potential: GFP-based sequences (even when truncated or including stop codons) were particularly efficient. In contrast, a spacer of similar length based on a CD4 intronic sequence was entirely inefficient. Spacer sequences influenced miRNA steady-state levels without affecting transcript stability. We demonstrate that with an optimized spacer, up to five concatenated hairpins targeting two different genes are efficiently expressed and able to knock down their respective targets. Transplantation of hematopoietic stem cells containing a CCR5 knockdown SMIG demonstrated a sustained in vivo efficacy of our approach. In summary, we have defined features that optimize SMIG efficiency. Based on these results, optimized knockdown of genes of interest, such as the HIV co-receptor CCR5 and the NADPH oxidase subunit p22phox, was achieved.

7.
Cereb Cortex ; 28(3): 949-962, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28158611

RESUMO

Prematurely born children often develop neurodevelopmental delay that has been correlated with reduced growth and microstructural alterations in the cerebral cortex. Much research has focused on apoptotic neuronal cell death as a key neuropathological features following preterm brain injuries. How scattered apoptotic death of neurons may contribute to microstructural alterations remains unknown. The present study investigated in a rat model the effects of targeted neuronal apoptosis on cortical microstructure using in vivo MRI imaging combined with neuronal reconstruction and histological analysis. We describe that mild, targeted death of layer IV neurons in the developing rat cortex induces MRI-defined metabolic and microstructural alterations including increased cortical fractional anisotropy. Delayed architectural modifications in cortical gray matter and myelin abnormalities in the subcortical white matter such as hypomyelination and microglia activation follow the acute phase of neuronal death and axonal degeneration. These results establish the link between mild cortical apoptosis and MRI-defined microstructure changes that are reminiscent to those previously observed in preterm babies.


Assuntos
Apoptose/fisiologia , Córtex Cerebral , Neurônios/ultraestrutura , Animais , Animais Recém-Nascidos , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Morte Celular/genética , Morte Celular/fisiologia , Córtex Cerebral/citologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/crescimento & desenvolvimento , Dendritos/metabolismo , Dendritos/ultraestrutura , Toxina Diftérica/genética , Toxina Diftérica/metabolismo , Embrião de Mamíferos , Proteína Glial Fibrilar Ácida/metabolismo , Glutamato-Amônia Ligase/metabolismo , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Proteínas dos Microfilamentos/metabolismo , Neurônios/metabolismo , Fosfopiruvato Hidratase/metabolismo , Ratos , Ratos Wistar
8.
Nat Commun ; 8(1): 1158, 2017 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-29079819

RESUMO

Perturbed neuronal migration and circuit development have been implicated in the pathogenesis of neurodevelopmental diseases; however, the direct steps linking these developmental errors to behavior alterations remain unknown. Here we demonstrate that Wnt/C-Kit signaling is a key regulator of glia-guided radial migration in rat somatosensory cortex. Transient downregulation of Wnt signaling in migrating, callosal projection neurons results in delayed positioning in layer 2/3. Delayed neurons display reduced neuronal activity with impaired afferent connectivity causing permanent deficit in callosal projections. Animals with these defects exhibit altered somatosensory function with reduced social interactions and repetitive movements. Restoring normal migration by overexpressing the Wnt-downstream effector C-Kit or selective chemogenetic activation of callosal projection neurons during a critical postnatal period prevents abnormal interhemispheric connections as well as behavioral alterations. Our findings identify a link between defective canonical Wnt signaling, delayed neuronal migration, deficient interhemispheric connectivity and abnormal social behavior analogous to autistic characteristics in humans.


Assuntos
Neurônios/metabolismo , Comportamento Social , Proteínas Wnt/metabolismo , Via de Sinalização Wnt , Animais , Comportamento Animal , Encéfalo/metabolismo , Movimento Celular , Cérebro/metabolismo , Corpo Caloso/metabolismo , Feminino , Células HEK293 , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Potenciais da Membrana , Neurogênese , Neuroglia/metabolismo , Fenótipo , Ratos , Ratos Wistar , Análise de Sequência de RNA , Córtex Somatossensorial/metabolismo
9.
Exp Neurol ; 297: 14-24, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28716558

RESUMO

Stimulation of endogenous neurogenesis and recruitment of neural progenitors from the subventricular zone (SVZ) neurogenic site may represent a useful strategy to improve regeneration in the ischemic cortex. Here, we tested whether transgenic overexpression of extracellular matrix metalloproteinase inducer (EMMPRIN), the regulator of matrix metalloproteinases (MMPs) expression, in endogenous neural progenitor cells (NPCs) in the subventricular zone (SVZ) could increase migration towards ischemic injury. For this purpose, we applied a lentivector-mediated gene transfer system. We found that EMMPRIN-transduced progenitors exhibited enhanced MMP-2 activity in vitro and showed improved motility in 3D collagen gel as well as in cortical slices. Using a rat model of neonatal ischemia, we showed that EMMPRIN overexpressing SVZ cells invade the injured cortical tissue more efficiently than controls. Our results suggest that EMMPRIN overexpression could be suitable approach to improve capacities of endogenous or transplanted progenitors to invade the injured cortex.


Assuntos
Basigina/biossíntese , Isquemia Encefálica/metabolismo , Movimento Celular/fisiologia , Córtex Cerebral/metabolismo , Ventrículos Laterais/metabolismo , Células-Tronco Neurais/metabolismo , Animais , Animais Recém-Nascidos , Basigina/genética , Isquemia Encefálica/patologia , Córtex Cerebral/patologia , Expressão Gênica , Ventrículos Laterais/patologia , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley , Ratos Wistar
10.
Mol Ther Methods Clin Dev ; 6: 16069, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27990449

RESUMO

Pluripotent stem cell (PSC)-based cell therapy is an attractive concept for neurodegenerative diseases, but can lead to tumor formation. This is particularly relevant as proliferating neural precursors rather than postmitotic mature neurons need to be transplanted. Thus, safety mechanisms to eliminate proliferating cells are needed. Here, we propose a suicide gene approach, based on cell cycle-dependent promoter Ki67-driven expression of herpes simplex virus thymidine kinase (HSV-TK). We generated a PSC line expressing this construct and induced neural differentiation. In vitro, proliferating PSC and early neural precursor cells (NPC) were killed by exposure to ganciclovir. In vivo, transplantation of PSC led to tumor formation, which was prevented by early ganciclovir treatment. Transplanted NPC did not lead to tumor formation and their survival and neural maturation were not affected by ganciclovir. In conclusion, the cell cycle promoter-driven suicide gene approach described in this study allows killing of proliferating undifferentiated precursor cells without expression of the suicide gene in mature neurons. This approach could also be of use for other stem cell-based therapies where the final target consists of postmitotic cells.

11.
Glia ; 64(3): 440-56, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26539695

RESUMO

The spatial organization of vascular endothelial growth factor (VEGF) signaling is a key determinant of vascular patterning during development and tissue repair. How VEGF signaling becomes spatially restricted and the role of VEGF secreting astrocytes in this process remains poorly understood. Using a VEGF-GFP fusion protein and confocal time-lapse microscopy, we observed the intracellular routing, secretion and immobilization of VEGF in scratch-activated living astrocytes. We found VEGF to be directly transported to cell-extracellular matrix attachments where it is incorporated into fibronectin fibrils. VEGF accumulated at ß1 integrin containing fibrillar adhesions and was translocated along the cell surface prior to internalization and degradation. We also found that only the astrocyte-derived, matrix-bound, and not soluble VEGF decreases ß1 integrin turnover in fibrillar adhesions. We suggest that polarized VEGF release and ECM remodeling by VEGF secreting cells is key to control the local concentration and signaling of VEGF. Our findings highlight the importance of astrocytes in directing VEGF functions and identify these mechanisms as promising target for angiogenic approaches.


Assuntos
Astrócitos/metabolismo , Polaridade Celular/fisiologia , Matriz Extracelular/metabolismo , Transdução de Sinais/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Astrócitos/ultraestrutura , Polaridade Celular/efeitos dos fármacos , Células Cultivadas , Córtex Cerebral/citologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hidrazonas/metabolismo , Antígeno Ki-67/metabolismo , Microscopia Confocal , Neurônios/metabolismo , Fotodegradação , Puromicina/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais/genética , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/metabolismo , Fatores de Tempo , Transfecção
12.
Exp Neurol ; 273: 126-37, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26291762

RESUMO

Apoptotic cell death is the leading cause of neuronal loss after neonatal brain injury. Little is known about the intrinsic capacity of the immature cerebral cortex for replacing dead cells. Here we test the hypothesis that neuronal apoptosis is able to trigger compensatory proliferation in surrounding cells. In order to establish a "pure" apoptotic cell death model and to avoid the confounding effects of broken blood-brain barrier and inflammatory reactions, we used a diphtheria toxin (DT) and diphtheria toxin receptor (DTR) system to induce ablation of layer IV neurons in the rodent somatosensory cortex during the early postnatal period. We found that DT-triggered apoptosis is a slowly progressing event lasting about for 7 days. While dying cells expressed the morphological features of apoptosis, we could not detect immunoreactivity for activated caspase-3 in these cells. Microglia activation and proliferation represented the earliest cellular responses to apoptotic cell death. In addition, we found that induced apoptosis triggered a massive proliferation of undifferentiated progenitor cell pool including Sox2 as well as NG2 cells. The default differentiation pattern of proliferating progenitors appears to be the glial phenotype; we could not find evidence for newly generated neurons in response to apoptotic neuronal death. These results suggest that mitotically active progenitor populations are intrinsically capable to contribute to the repair process of injured cortical tissue and may represent a potential target for neuronal replacement strategies.


Assuntos
Apoptose/fisiologia , Lesões Encefálicas/fisiopatologia , Proliferação de Células/fisiologia , Córtex Cerebral/citologia , Células-Tronco Neurais/fisiologia , Neurônios/fisiologia , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Apoptose/genética , Lesões Encefálicas/patologia , Caspase 3/metabolismo , Proliferação de Células/efeitos dos fármacos , Córtex Cerebral/crescimento & desenvolvimento , Toxina Diftérica/farmacologia , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/genética , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/fisiologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neuroglia/efeitos dos fármacos , Neuroglia/fisiologia , Neurônios/ultraestrutura , Ratos , Ratos Wistar , Fatores de Tempo , Proteína Homeobox SIX3
13.
J Virol ; 89(13): 6761-72, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25903342

RESUMO

UNLABELLED: Gene-engineered CD34(+) hematopoietic stem and progenitor cells (HSPCs) can be used to generate an HIV-1-resistant immune system. However, a certain threshold of transduced HSPCs might be required for transplantation into mice for creating an HIV-resistant immune system. In this study, we combined CCR5 knockdown by a highly efficient microRNA (miRNA) lentivector with pretransplantation selection of transduced HSPCs to obtain a rather pure population of gene engineered CD34(+) cells. Low-level transduction of HSPCs and subsequent sorting by flow cytometry yielded >70% transduced cells. Mice transplanted with these cells showed functional and persistent resistance to a CCR5-tropic HIV strain: viral load was significantly decreased over months, and human CD4(+) T cells were preserved. In one mouse, viral mutations, resulting presumably in a CXCR4-tropic strain, overcame HIV resistance. Our results suggest that HSPC-based CCR5 knockdown may lead to efficient control of HIV in vivo. We overcame a major limitation of previous HIV gene therapy in humanized mice in which only a proportion of the cells in chimeric mice in vivo are anti-HIV engineered. Our strategy underlines the promising future of gene engineering HIV-resistant CD34(+) cells that produce a constant supply of HIV-resistant progeny. IMPORTANCE: Major issues in experimental long-term in vivo HIV gene therapy have been (i) low efficacy of cell transduction at the time of transplantation and (ii) transduction resulting in multiple copies of heterologous DNA in target cells. In this study, we demonstrated the efficacy of a transplantation approach with a selection step for transduced cells that allows transplantation of an enriched population of HSPCs expressing a single (low) copy of a CCR5 miRNA. Efficient maintenance of CD4(+) T cells and a low viral titer resulted only when at least 70% of the HIV target cells were genetically modified. These findings imply that clinical protocols of HIV gene therapy require a selective enrichment of genetically targeted cells because positive selection of modified cells is likely to be insufficient below this threshold. This selection approach may be beneficial not only for HIV patients but also for other patients requiring transplantation of genetically modified cells.


Assuntos
Resistência à Doença , Técnicas de Silenciamento de Genes , Infecções por HIV/imunologia , HIV-1/fisiologia , Receptores CCR5/metabolismo , Receptores de HIV/antagonistas & inibidores , Ligação Viral , Animais , Terapia Genética/métodos , Vetores Genéticos , Infecções por HIV/virologia , Células-Tronco Hematopoéticas/imunologia , Células-Tronco Hematopoéticas/virologia , Humanos , Lentivirus/genética , Camundongos SCID , Transplante , Carga Viral
14.
Cell Rep ; 10(8): 1349-61, 2015 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-25732825

RESUMO

The precise timing of pyramidal cell migration from the ventricular germinal zone to the cortical plate is essential for establishing cortical layers, and migration errors can lead to neurodevelopmental disorders underlying psychiatric and neurological diseases. Here, we report that Wnt canonical as well as non-canonical signaling is active in pyramidal precursors during radial migration. We demonstrate using constitutive and conditional genetic strategies that transient downregulation of canonical Wnt/ß-catenin signaling during the multipolar stage plays a critical role in polarizing and orienting cells for radial migration. In addition, we show that reduced canonical Wnt signaling is triggered cell autonomously by time-dependent expression of Wnt5A and activation of non-canonical signaling. We identify ephrin-B1 as a canonical Wnt-signaling-regulated target in control of the multipolar-to-bipolar switch. These findings highlight the critical role of Wnt signaling activity in neuronal positioning during cortical development.


Assuntos
Córtex Cerebral/metabolismo , Neurônios/metabolismo , Via de Sinalização Wnt , Animais , Movimento Celular , Córtex Cerebral/citologia , Córtex Cerebral/patologia , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Efrina-B1/metabolismo , Microscopia de Fluorescência , Neurônios/citologia , Neurônios/patologia , Células Piramidais/citologia , Células Piramidais/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Wistar , Proteínas com Domínio T/metabolismo , Imagem com Lapso de Tempo , Proteínas Wnt/antagonistas & inibidores , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Proteína Wnt-5a , beta Catenina/metabolismo
15.
Mol Ther Nucleic Acids ; 3: e207, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25350582

RESUMO

Gene knockdown using micro RNA (miRNA)-based vector constructs is likely to become a prominent gene therapy approach. It was the aim of this study to improve the efficiency of gene knockdown through optimizing the structure of miRNA mimics. Knockdown of two target genes was analyzed: CCR5 and green fluorescent protein. We describe here a novel and optimized miRNA mimic design called mirGE comprising a lower stem length of 13 base pairs (bp), positioning of the targeting strand on the 5' side of the miRNA, together with nucleotide mismatches in upper stem positions 1 and 12 placed on the passenger strand. Our mirGE proved superior to miR-30 in four aspects: yield of targeting strand incorporation into RNA-induced silencing complex (RISC); incorporation into RISC of correct targeting strand; precision of cleavage by Drosha; and ratio of targeting strand over passenger strand. A triple mirGE hairpin cassette targeting CCR5 was constructed. It allowed CCR5 knockdown with an efficiency of over 90% upon single-copy transduction. Importantly, single-copy expression of this construct rendered transduced target cells, including primary human macrophages, resistant to infection with a CCR5-tropic strain of HIV. Our results provide new insights for a better knockdown efficiency of constructs containing miRNA. Our results also provide the proof-of-principle that cells can be rendered HIV resistant through single-copy vector transduction, rendering this approach more compatible with clinical applications.

16.
J Dermatolog Treat ; 25(5): 371-4, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23550714

RESUMO

The European Commission has recently issued a marketing authorisation valid throughout the European Union for 5-aminolaevulinic acid (Ameluz). The decision was based on the favorable opinion of the CHMP recommending a marketing authorization for 5-aminolaevulinic acid for treatment of actinic keratosis of mild to moderate intensity on the face and scalp. The active substance is a sensitizer used in photodynamic/radiation therapy (ATC code L01XD04). The gel should cover the lesions and approximately 5 mm of the surrounding area with a film of about 1 mm thickness. The entire treatment area should be illuminated with a red light source, either with a narrow spectrum around 630 nm and a light dose of approximately 37 J/cm(2) or a broader and continuous spectrum in the range between 570 and 670 nm with a light dose between 75 and 200 J/cm(2). One session of photodynamic therapy should be administered for single or multiple lesions. Non- or partially responding lesions should be retreated in a second session 3 months after the first treatment. 5-aminolaevulinic acid is metabolized to protoporphyrin IX, a photoactive compound which accumulates intracellularly in the treated actinic keratosis lesions. Protoporphyrin IX is activated by illumination with red light of a suitable wavelength and energy. In the presence of oxygen, reactive oxygen species are formed which causes damage of cellular components and eventually destroys the target cells. The benefit with 5-aminolaevulinic acid is its ability to improve the complete response rate of actinic keratosis lesions. The most common side effects are reactions at the site of application. The objective of this article is to summarize the scientific review of the application. The detailed scientific assessment report and product information, including the summary of product characteristics (SmPC), are available on the EMA website (www.ema.europa.eu).


Assuntos
Ácido Aminolevulínico/administração & dosagem , Ceratose Actínica/tratamento farmacológico , Fotoquimioterapia , Fármacos Fotossensibilizantes/administração & dosagem , Administração Tópica , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Ácido Aminolevulínico/análogos & derivados , Ácido Aminolevulínico/química , Face , Feminino , Géis , Humanos , Masculino , Pessoa de Meia-Idade , Fármacos Fotossensibilizantes/química , Couro Cabeludo , Taxa de Sobrevida , Resultado do Tratamento , Adulto Jovem
17.
Cell Cycle ; 12(16): 2691-702, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23907129

RESUMO

The mechanisms that control proliferation, or lack thereof, in adult human ß cells are poorly understood. Controlled induction of proliferation could dramatically expand the clinical application of islet cell transplantation and represents an important component of regenerative approaches to a functional cure of diabetes. Adult human ß cells are particularly resistant to common proliferative targets and often dedifferentiate during proliferation. Here we show that expression of the transcription factor E2F3 has a role in regulating ß-cell quiescence and proliferation. We found human islets have virtually no expression of the pro-proliferative G 1/S transcription factors E2F1-3, but an abundance of inhibitory E2Fs 4-6. In proliferative human insulinomas, inhibitory E2Fs were absent, while E2F3 is expressed. Using this pattern as a "roadmap" for proliferation, we demonstrated that ectopic expression of nuclear E2F3 induced significant expansion of insulin-positive cells in both rat and human islets. These cells did not undergo apoptosis and retained their glucose-responsive insulin secretion, showing the ability to reverse diabetes in mice. Our results suggest that E2F4-6 may help maintain quiescence in human ß cells and identify E2F3 as a novel target to induce proliferation of functional ß cells. Refinement of this approach may increase the islets available for cell-based therapies and research and could provide important cues for understanding in vivo proliferation of ß cells.


Assuntos
Proliferação de Células , Fator de Transcrição E2F3/metabolismo , Células Secretoras de Insulina/fisiologia , Análise de Variância , Animais , Humanos , Immunoblotting , Células Secretoras de Insulina/metabolismo , Camundongos , Técnicas Analíticas Microfluídicas , Microscopia de Fluorescência , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
18.
Methods Mol Biol ; 945: 417-48, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23097121

RESUMO

Even now, most human cell lines used in research are derived from tumor cells. They are still widely used because they grow well in vitro and so far have helped answering several basic biological questions. However, as modern biology moves into more sophisticated areas, scientists now need human cell lines closer to normal primary cells and further from transformed cancerous cells. The recent identification of cellular genes involved in cell cycling and senescence, together with the development of molecular tools capable of cleanly integrating transgenes into the genome of target cells, have moved the frontier of genetic engineering. In this chapter, we present a detailed hands-on protocol, based on lentivirus-derived vectors and a combination of two native cellular genes that has proven very efficient in generating immortal cell lines from several human primary cells, while preserving most of their original properties.


Assuntos
Engenharia Celular/métodos , Linhagem Celular/citologia , Lentivirus/genética , Citometria de Fluxo , Vetores Genéticos/genética , Humanos , Plasmídeos/genética , Reação em Cadeia da Polimerase , Segurança
19.
Cereb Cortex ; 22(1): 144-57, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21625013

RESUMO

The cingulate and retrosplenial regions are major components of the dorsomedial (dm) limbic cortex and have been implicated in a range of cognitive functions such as emotion, attention, and spatial memory. While the structure and connectivity of these cortices are well characterized, little is known about their development. Notably, the timing and mode of migration that govern the appropriate positioning of late-born neurons remain unknown. Here, we analyzed migratory events during the early postnatal period from ventricular/subventricular zone (VZ/SVZ) to the cerebral cortex by transducing neuronal precursors in the VZ/SVZ of newborn rats/mice with Tomato/green fluorescent protein-encoding lentivectors. We have identified a pool of postmitotic pyramidal precursors in the dm part of the neonatal VZ/SVZ that migrate into the medial limbic cortex during the first postnatal week. Time-lapse imaging demonstrates that these cells migrate on radial glial fibers by locomotion and display morphological and behavioral changes as they travel through the white matter and enter into the cortical gray matter. In the granular retrosplenial cortex, these cells give rise to a Satb2+ pyramidal subtype and develop dendritic bundles in layer I. Our observations provide the first insight into the patterns and dynamics of cell migration into the medial limbic cortex.


Assuntos
Movimento Celular/genética , Giro do Cíngulo/citologia , Giro do Cíngulo/crescimento & desenvolvimento , Células Piramidais/fisiologia , Fatores Etários , Animais , Animais Recém-Nascidos , Bromodesoxiuridina/metabolismo , Ventrículos Cerebrais/citologia , Ventrículos Cerebrais/crescimento & desenvolvimento , Dendritos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Vetores Genéticos/fisiologia , Glutamato Descarboxilase/genética , Proteínas de Fluorescência Verde/genética , Lentivirus/genética , Proteínas Luminescentes/genética , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Camundongos , Camundongos Transgênicos , Microscopia Confocal , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/fisiologia , Células Piramidais/ultraestrutura , Proteínas com Domínio T/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina/genética , Proteína Vermelha Fluorescente
20.
Hum Gene Ther ; 22(10): 1255-67, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21761975

RESUMO

Lentiviral vectors are now widely considered one of the safest and most efficient tools for gene delivery and stable gene expression. Even though inducible gene expression cassettes are mandatory for many genetic engineering strategies, most current systems suffer from various issues, such as the requirement of two vectors, which decreases the overall efficiency of the transduction, leakiness and/or insufficient levels of activation of the inducible promoter, lack of selectable marker, low titers, or general issues associated with the cloning of large plasmids. In this article, we describe the design and functional characterization of a set of "all-in-one" multicistronic autoinducible lentivectors. They combine: (1) an optimized drug-inducible promoter; (2) a multicistronic strategy to express living color, selectable marker, and transactivator; and (3) acceptor sites for easy recombination cloning of genes of interest. These polyswitch lentivectors have good titers, very low basal activity, and reversible high induced activity, and can accept a growing number of genes already cloned in entry plasmids. These combined features make them a novel, powerful, and versatile tool for current and future genetic engineering approaches.


Assuntos
Regulação da Expressão Gênica/genética , Técnicas de Transferência de Genes , Engenharia Genética/métodos , Vetores Genéticos/genética , Lentivirus , Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , Western Blotting , Primers do DNA/genética , Regiões Promotoras Genéticas/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Sítios de Splice de RNA/genética , Reação em Cadeia da Polimerase em Tempo Real , Transativadores/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA