Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Microbiol ; 10: 2567, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31798545

RESUMO

S. mitis is an abundant member of the commensal microbiota of the oral cavity and pharynx, which has the potential to promote systemic infections. By analyzing a collection of S. mitis strains isolated from the oral cavity at commensal states or from systemic infections (blood strains), we established that S. mitis ubiquitously express the surface immunodominant protein, PcsB (also called GbpB), required for binding to sucrose-derived exopolysaccharides (EPS). Immuno dot blot assays with anti-PcsB antibodies and RT-qPCR transcription analyses revealed strain-specific profiles of PcsB production associated with diversity in pcsB transcriptional activities. Additionally, blood strains showed significantly higher levels of PcsB expression compared to commensal isolates. Because Streptococcus mutans co-colonizes S. mitis dental biofilms, and secretes glucosyltransferases (GtfB/C/D) for the synthesis of highly insoluble EPS from sucrose, profiles of S. mitis binding to EPS, biofilm formation and evasion of the complement system were assessed in sucrose-containing BHI medium supplemented or not with filter-sterilized S. mutans culture supernatants. These analyses showed significant S. mitis binding to EPS and biofilm formation in the presence of S. mutans supernatants supplemented with sucrose, compared to BHI or BHI-sucrose medium. In addition, these phenotypes were abolished if strains were grown in culture supernatants of a gtfBCD-defective S. mutans mutant. Importantly, GtfB/C/D-associated phenotypes were enhanced in high PcsB-expressing strains, compared to low PcsB producers. Increased PcsB expression was further correlated with increased resistance to deposition of C3b/iC3b of the complement system after exposure to human serum, when strains were previously grown in the presence of S. mutans supernatants. Finally, analyses of PcsB polymorphisms and bioinformatic prediction of epitopes with significant binding to MHC class II alleles revealed that blood isolates harbor PcsB polymorphisms in its functionally conserved CHAP-domain, suggesting antigenic variation. These findings reveal important roles of PcsB in S. mitis-host interactions under commensal and pathogenic states, highlighting the need for studies to elucidate mechanisms regulating PcsB expression in this species.

2.
J Med Microbiol ; 65(12): 1456-1464, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27902365

RESUMO

Emerging antibiotic resistance in the oropharyngeal microbiota, of which Streptococcus salivarius is a prominent species, represents a challenge for treating paediatric populations. In this study, we investigated the role of Streptococcussalivarius as a reservoir for antibiotic resistance genes (ARG) in the oral microbiota by analysing 95 Streptococcussalivarius isolates from 22 healthy infants (2-16 months of age). MICs of penicillin G, amoxicillin, erythromycin, tetracycline, doxycycline and streptomycin were determined. ARG profiles were assessed in a subset of 21 strains by next-generation sequencing of genomes, followed by searches of assembled reads against the Comprehensive Antibiotic Resistance Database. Strains resistant to erythromycin, penicillins and tetracyclines were isolated from 83.3, 33.3 and 16.6 %, respectively, of infants aged 2 to 8 months with no prior antibiotic treatment. These percentages were100.0, 66.6 and 50.0 %, by 13 to 16 months of age. ARG or polymorphisms associated with antibiotic resistance were the most prevalent and involved genes for macrolide efflux (mel, mefA/E and macB), ribosomal protection [erm(B), tet(M) and tet(O)] and ß-lactamase-like proteins. Phylogenetically related strains showing multidrug-resistant phenotypes harboured multidrug efflux ARG. Polymorphic genes associated with antibiotic resistance to drugs affecting DNA replication, folate synthesis, RNA/protein synthesis and regulators of antibiotic stress responses were detected. These data imply that Streptococcussalivarius strains established during maturation of the oral microbiota harbour a diverse array of functional ARG, even in the absence of antibiotic selective pressures, highlighting a potential role for this species in shaping antibiotic susceptibility profiles of oropharyngeal communities.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla , Boca/microbiologia , Streptococcus salivarius/efeitos dos fármacos , Streptococcus salivarius/genética , Antibacterianos/classificação , Proteínas de Bactérias/genética , Proteínas de Transporte/genética , Farmacorresistência Bacteriana Múltipla/genética , Feminino , Genes Bacterianos , Genes MDR , Genoma Bacteriano , Genótipo , Voluntários Saudáveis , Humanos , Lactente , Masculino , Proteínas de Membrana/genética , Testes de Sensibilidade Microbiana , Fenótipo , Análise de Sequência de DNA , Streptococcus salivarius/classificação , Streptococcus salivarius/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA