Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Curr Protoc ; 4(1): e969, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38265166

RESUMO

PhyloFisher is a software package written primarily in Python3 that can be used for the creation, analysis, and visualization of phylogenomic datasets that consist of protein sequences from eukaryotic organisms. Unlike many existing phylogenomic pipelines, PhyloFisher comes with a manually curated database of 240 protein-coding genes, a subset of a previous phylogenetic dataset sampled from 304 eukaryotic taxa. The software package can also utilize a user-created database of eukaryotic proteins, which may be more appropriate for shallow evolutionary questions. PhyloFisher is also equipped with a set of utilities to aid in running routine analyses, such as the prediction of alternative genetic codes, removal of genes and/or taxa based on occupancy/completeness of the dataset, testing for amino acid compositional heterogeneity among sequences, removal of heterotachious and/or fast-evolving sites, removal of fast-evolving taxa, supermatrix creation from randomly resampled genes, and supermatrix creation from nucleotide sequences. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Constructing a phylogenomic dataset Basic Protocol 2: Performing phylogenomic analyses Support Protocol 1: Installing PhyloFisher Support Protocol 2: Creating a custom phylogenomic database.


Assuntos
Aminoácidos , Evolução Biológica , Filogenia , Sequência de Aminoácidos , Cultura
2.
Mol Phylogenet Evol ; 191: 107991, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38092322

RESUMO

Anaerobes have emerged in several major lineages of ciliates, but the number of independent transitions to anaerobiosis among ciliates is unknown. The APM clade (Armophorea, Muranotrichea, Parablepharismea) represents the largest clade of obligate anaerobes among ciliates and contains free-living marine and freshwater representatives as well as gut endobionts of animals. The evolution of APM group has only recently started getting attention, and our knowledge on its phylogeny and genetics is still limited to a fraction of taxa. While ciliates portray a wide array of alternatives to the standard genetic code across numerous classes, the APM ciliates were considered to be the largest group using exclusively standard nuclear genetic code. In this study, we present a pan-ciliate phylogenomic analysis with emphasis on the APM clade, bringing the first phylogenomic analysis of the family Tropidoatractidae (Armophorea) and confirming the position of Armophorida within Armophorea. We include five newly sequenced single cell transcriptomes from marine, freshwater, and endobiotic APM ciliates - Palmarella salina, Anteclevelandella constricta, Nyctotherus sp., Caenomorpha medusula, and Thigmothrix strigosa. We report the first discovery of an alternative nuclear genetic code among APM ciliates, used by Palmarella salina (Tropidoatractidae, Armophorea), but not by its close relative, Tropidoatractus sp., and provide a comparative analysis of stop codon identity and frequency indicating the precedency to the UAG codon loss/reassignment over the UAA codon reassignment in the specific ancestor of Palmarella. Comparative genomic and proteomic studies of this group may help explain the constraints that underlie UAR stop-to-sense reassignment, the most frequent type of alternative nuclear genetic code, not only in ciliates, but eukaryotes in general.


Assuntos
Cilióforos , Proteômica , Animais , Filogenia , Código Genético , Cilióforos/genética , Códon de Terminação , Perfilação da Expressão Gênica
3.
Curr Biol ; 33(19): 4269-4275.e3, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37729914

RESUMO

Within flatworms, the vast majority of parasitism is innate to Neodermata, the most derived and diversified group of the phylum Platyhelminthes.1,2 The four major lineages of Neodermata maintain various combinations of life strategies.3 They include both externally (ecto-) and internally feeding (endo-) parasites. Some lineages complete their life cycles directly by infecting a single host, whereas others succeed only through serial infections of multiple hosts of various vertebrate and invertebrate groups. Food sources and modes of digestion add further combinatorial layers to the often incompletely understood mosaic of neodermatan life histories. Their evolutionary trajectories have remained molecularly unresolved because of conflicting evolutionary inferences and a lack of genomic data.4 Here, we generated transcriptomes for nine early branching neodermatan representatives and performed detailed phylogenomic analyses to address these critical gaps. Polyopisthocotylea, mostly hematophagous ectoparasites, form a group with the mostly hematophagous but endoparasitic trematodes (Trematoda), rather than sharing a common ancestor with Monopisthocotylea, ectoparasitic epithelial feeders. Phylogenetic placement of the highly specialized endoparasitic Cestoda alters depending on the model. Regardless of this uncertainty, this study brings an unconventional perspective on the evolution of platyhelminth parasitism, rejecting a common origin for the endoparasitic lifestyle intrinsic to cestodes and trematodes. Instead, our data indicate that complex life cycles and invasion of vertebrates' gut lumen, the hallmark features of these parasites, evolved independently within Neodermata. We propose the demise of the traditionally recognized class Monogenea and the promotion of its two subclasses to the class level as Monopisthocotyla new class and Polyopisthocotyla new class.

4.
Microbiome ; 11(1): 134, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37322519

RESUMO

BACKGROUND: Marine heterotrophic flagellates (HF) are dominant bacterivores in the ocean, where they represent the trophic link between bacteria and higher trophic levels and participate in the recycling of inorganic nutrients for regenerated primary production. Studying their activity and function in the ecosystem is challenging since most of the HFs in the ocean are still uncultured. In the present work, we investigated gene expression of natural HF communities during bacterivory in four unamended seawater incubations. RESULTS: The most abundant species growing in our incubations belonged to the taxonomic groups MAST-4, MAST-7, Chrysophyceae, and Telonemia. Gene expression dynamics were similar between incubations and could be divided into three states based on microbial counts, each state displaying distinct expression patterns. The analysis of samples where HF growth was highest revealed some highly expressed genes that could be related to bacterivory. Using available genomic and transcriptomic references, we identified 25 species growing in our incubations and used those to compare the expression levels of these specific genes. Video Abstract CONCLUSIONS: Our results indicate that several peptidases, together with some glycoside hydrolases and glycosyltransferases, are more expressed in phagotrophic than in phototrophic species, and thus could be used to infer the process of bacterivory in natural assemblages.


Assuntos
Ecossistema , Eucariotos , Eucariotos/genética , Água do Mar/microbiologia , Expressão Gênica
5.
Mol Biol Evol ; 40(1)2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36610734

RESUMO

Apicomplexans and related lineages comprise many obligate symbionts of animals; some of which cause notorious diseases such as malaria. They evolved from photosynthetic ancestors and transitioned into a symbiotic lifestyle several times, giving rise to species with diverse non-photosynthetic plastids. Here, we sought to reconstruct the evolution of the cryptic plastids in the apicomplexans, chrompodellids, and squirmids (ACS clade) by generating five new single-cell transcriptomes from understudied gregarine lineages, constructing a robust phylogenomic tree incorporating all ACS clade sequencing datasets available, and using these to examine in detail, the evolutionary distribution of all 162 proteins recently shown to be in the apicoplast by spatial proteomics in Toxoplasma. This expanded homology-based reconstruction of plastid proteins found in the ACS clade confirms earlier work showing convergence in the overall metabolic pathways retained once photosynthesis is lost, but also reveals differences in the degrees of plastid reduction in specific lineages. We show that the loss of the plastid genome is common and unexpectedly find many lineage- and species-specific plastid proteins, suggesting the presence of evolutionary innovations and neofunctionalizations that may confer new functional and metabolic capabilities that are yet to be discovered in these enigmatic organelles.


Assuntos
Plastídeos , Proteoma , Animais , Proteoma/genética , Plastídeos/genética , Filogenia , Fotossíntese/genética , Redes e Vias Metabólicas
6.
Curr Biol ; 31(24): 5605-5612.e5, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34710348

RESUMO

Discoveries of diverse microbial eukaryotes and their inclusion in comprehensive phylogenomic analyses have crucially re-shaped the eukaryotic tree of life in the 21st century.1 At the deepest level, eukaryotic diversity comprises 9-10 "supergroups." One of these supergroups, the Metamonada, is particularly important to our understanding of the evolutionary dynamics of eukaryotic cells, including the remodeling of mitochondrial function. All metamonads thrive in low-oxygen environments and lack classical aerobic mitochondria, instead possessing mitochondrion-related organelles (MROs) with metabolisms that are adapted to low-oxygen conditions. These MROs lack an organellar genome, do not participate in the Krebs cycle and oxidative phosphorylation,2 and often synthesize ATP by substrate-level phosphorylation coupled to hydrogen production.3,4 The events that occurred during the transition from an oxygen-respiring mitochondrion to a functionally streamlined MRO early in metamonad evolution remain largely unknown. Here, we report transcriptomes of two recently described, enigmatic, anaerobic protists from the genus Anaeramoeba.5 Using phylogenomic analysis, we show that these species represent a divergent, phylum-level lineage in the tree of metamonads, emerging as a sister group of the Parabasalia and reordering the deep branching order of the metamonad tree. Metabolic reconstructions of the Anaeramoeba MROs reveal many "classical" mitochondrial features previously not seen in metamonads, including a disulfide relay import system, propionate production, and amino acid metabolism. Our findings suggest that the cenancestor of Metamonada likely had MROs with more classical mitochondrial features than previously anticipated and demonstrate how discoveries of novel lineages of high taxonomic rank continue to transform our understanding of early eukaryote evolution.


Assuntos
Eucariotos , Organelas , Anaerobiose , Eucariotos/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Organelas/genética , Organelas/metabolismo , Oxigênio/metabolismo , Filogenia
7.
PLoS Biol ; 19(8): e3001365, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34358228

RESUMO

Phylogenomic analyses of hundreds of protein-coding genes aimed at resolving phylogenetic relationships is now a common practice. However, no software currently exists that includes tools for dataset construction and subsequent analysis with diverse validation strategies to assess robustness. Furthermore, there are no publicly available high-quality curated databases designed to assess deep (>100 million years) relationships in the tree of eukaryotes. To address these issues, we developed an easy-to-use software package, PhyloFisher (https://github.com/TheBrownLab/PhyloFisher), written in Python 3. PhyloFisher includes a manually curated database of 240 protein-coding genes from 304 eukaryotic taxa covering known eukaryotic diversity, a novel tool for ortholog selection, and utilities that will perform diverse analyses required by state-of-the-art phylogenomic investigations. Through phylogenetic reconstructions of the tree of eukaryotes and of the Saccharomycetaceae clade of budding yeasts, we demonstrate the utility of the PhyloFisher workflow and the provided starting database to address phylogenetic questions across a large range of evolutionary time points for diverse groups of organisms. We also demonstrate that undetected paralogy can remain in phylogenomic "single-copy orthogroup" datasets constructed using widely accepted methods such as all vs. all BLAST searches followed by Markov Cluster Algorithm (MCL) clustering and application of automated tree pruning algorithms. Finally, we show how the PhyloFisher workflow helps detect inadvertent paralog inclusions, allowing the user to make more informed decisions regarding orthology assignments, leading to a more accurate final dataset.


Assuntos
Eucariotos/genética , Filogenia , Software
8.
BMC Biol ; 19(1): 77, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33863338

RESUMO

BACKGROUND: Apicomplexa is a diverse phylum comprising unicellular endobiotic animal parasites and contains some of the most well-studied microbial eukaryotes including the devastating human pathogens Plasmodium falciparum and Cryptosporidium hominis. In contrast, data on the invertebrate-infecting gregarines remains sparse and their evolutionary relationship to other apicomplexans remains obscure. Most apicomplexans retain a highly modified plastid, while their mitochondria remain metabolically conserved. Cryptosporidium spp. inhabit an anaerobic host-gut environment and represent the known exception, having completely lost their plastid while retaining an extremely reduced mitochondrion that has lost its genome. Recent advances in single-cell sequencing have enabled the first broad genome-scale explorations of gregarines, providing evidence of differential plastid retention throughout the group. However, little is known about the retention and metabolic capacity of gregarine mitochondria. RESULTS: Here, we sequenced transcriptomes from five species of gregarines isolated from cockroaches. We combined these data with those from other apicomplexans, performed detailed phylogenomic analyses, and characterized their mitochondrial metabolism. Our results support the placement of Cryptosporidium as the earliest diverging lineage of apicomplexans, which impacts our interpretation of evolutionary events within the phylum. By mapping in silico predictions of core mitochondrial pathways onto our phylogeny, we identified convergently reduced mitochondria. These data show that the electron transport chain has been independently lost three times across the phylum, twice within gregarines. CONCLUSIONS: Apicomplexan lineages show variable functional restructuring of mitochondrial metabolism that appears to have been driven by adaptations to parasitism and anaerobiosis. Our findings indicate that apicomplexans are rife with convergent adaptations, with shared features including morphology, energy metabolism, and intracellularity.


Assuntos
Apicomplexa , Mitocôndrias , Animais , Apicomplexa/genética , Humanos , Mitocôndrias/genética , Filogenia , Análise de Célula Única , Transcriptoma
10.
Curr Biol ; 30(11): 2037-2050.e6, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32330419

RESUMO

Oxygen plays a crucial role in energetic metabolism of most eukaryotes. Yet adaptations to low-oxygen concentrations leading to anaerobiosis have independently arisen in many eukaryotic lineages, resulting in a broad spectrum of reduced and modified mitochondrion-related organelles (MROs). In this study, we present the discovery of two new class-level lineages of free-living marine anaerobic ciliates, Muranotrichea, cl. nov. and Parablepharismea, cl. nov., that, together with the class Armophorea, form a major clade of obligate anaerobes (APM ciliates) within the Spirotrichea, Armophorea, and Litostomatea (SAL) group. To deepen our understanding of the evolution of anaerobiosis in ciliates, we predicted the mitochondrial metabolism of cultured representatives from all three classes in the APM clade by using transcriptomic and metagenomic data and performed phylogenomic analyses to assess their evolutionary relationships. The predicted mitochondrial metabolism of representatives from the APM ciliates reveals functional adaptations of metabolic pathways that were present in their last common ancestor and likely led to the successful colonization and diversification of the group in various anoxic environments. Furthermore, we discuss the possible relationship of Parablepharismea to the uncultured deep-sea class Cariacotrichea on the basis of single-gene analyses. Like most anaerobic ciliates, all studied species of the APM clade host symbionts, which we propose to be a significant accelerating factor in the transitions to an obligately anaerobic lifestyle. Our results provide an insight into the evolutionary mechanisms of early transitions to anaerobiosis and shed light on fine-scale adaptations in MROs over a relatively short evolutionary time frame.


Assuntos
Anaerobiose/genética , Anaerobiose/fisiologia , Evolução Biológica , Cilióforos/genética , Cilióforos/fisiologia , Genômica , Cilióforos/ultraestrutura , Mitocôndrias/fisiologia
11.
J Phycol ; 56(3): 833-835, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32160315

RESUMO

In response to a comment in this issue on our proposal of new terminology to distinguish red algal parasites, we clarify a few key issues. The terms adelphoparasite and alloparasite were previously used to identify parasites that infected close or distant relatives. However, most red algal parasites have only been studied morphologically, and molecular tools have shown that these binary terms do a poor job at representing the range of parasite-host relationships. We recognize the need to clarify inferred misconceptions that appear to be drawing from historical terminology to contaminate our new definitions. We did not intend to replace the term adelphoparasite with neoplastic parasites and the term alloparasites with archaeplastic parasites. Rather, we seek to establish new terms for discussing red algal parasites, based on the retention of a native plastid, a binary biological trait that is relatively easy to identify using modern methods and has biological implications for the interactions between a parasite and its host. The new terminology can better account for the spectrum of relationships and developmental patterns found among the many independently evolved red algal parasites, and it is intended to inspire new research, particularly the role of plastids in the survival and evolution of red algal parasites.


Assuntos
Parasitos , Rodófitas , Animais , Filogenia , Plastídeos , Simbiose
12.
Biomolecules ; 9(8)2019 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-31430853

RESUMO

The phylum Apicomplexa (Alveolates) comprises a group of host-associated protists, predominately intracellular parasites, including devastating parasites like Plasmodium falciparum, the causative agent of malaria. One of the more fascinating characteristics of Apicomplexa is their highly reduced (and occasionally lost) remnant plastid, termed the apicoplast. Four core metabolic pathways are retained in the apicoplast: heme synthesis, iron-sulfur cluster synthesis, isoprenoid synthesis, and fatty acid synthesis. It has been suggested that one or more of these pathways are essential for plastid and plastid genome retention. The past decade has witnessed the discovery of several apicomplexan relatives, and next-generation sequencing efforts are revealing that they retain variable plastid metabolic capacities. These data are providing clues about the core genes and pathways of reduced plastids, while at the same time further confounding our view on the evolutionary history of the apicoplast. Here, we examine the evolutionary history of the apicoplast, explore plastid metabolism in Apicomplexa and their close relatives, and propose that the differences among reduced plastids result from a game of endosymbiotic roulette. Continued exploration of the Apicomplexa and their relatives is sure to provide new insights into the evolution of the apicoplast and apicomplexans as a whole.


Assuntos
Apicomplexa/metabolismo , Luz , Apicomplexa/genética
13.
J Phycol ; 55(2): 279-288, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30537065

RESUMO

Parasitism is a life strategy that has repeatedly evolved within the Florideophyceae. Historically, the terms adelphoparasite and alloparasite have been used to distinguish parasites based on the relative phylogenetic relationship of host and parasite. However, analyses using molecular phylogenetics indicate that nearly all red algal parasites infect within their taxonomic family, and a range of relationships exist between host and parasite. To date, all investigated adelphoparasites have lost their plastid, and instead, incorporate a host-derived plastid when packaging spores. In contrast, a highly reduced plastid lacking photosynthesis genes was sequenced from the alloparasite Choreocolax polysiphoniae. Here we present the complete Harveyella mirabilis plastid genome, which has also lost genes involved in photosynthesis, and a partial plastid genome from Leachiella pacifica. The H. mirabilis plastid shares more synteny with free-living red algal plastids than that of C. polysiphoniae. Phylogenetic analysis demonstrates that C. polysiphoniae, H. mirabilis, and L. pacifica form a robustly supported clade of parasites, which retain their own plastid genomes, within the Rhodomelaceae. We therefore transfer all three genera from the exclusively parasitic family, Choreocolacaceae, to the Rhodomelaceae. Additionally, we recommend applying the terms archaeplastic parasites (formerly alloparasites), and neoplastic parasites (formerly adelphoparasites) to distinguish red algal parasites using a biological framework rather than taxonomic affiliation with their hosts.


Assuntos
Parasitos , Rodófitas , Animais , Evolução Molecular , Filogenia , Plastídeos
14.
Mol Phylogenet Evol ; 119: 151-159, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29137957

RESUMO

Phylogenetic analyses of transcriptome data for representatives of the red algal Acrochaetiales-Palmariales Complex provided robust support for the assignment of genera to the constituent families. In the Acrochaetiales, the genera Acrochaetium, Grania, and an unnamed genus-level lineage (Acrochaetiac sp._1Aus) were assigned to the Acrochaetiaceae, while Audouinella is placed in a resurrected Audouinellaceae and Rhodochorton and Rhododrewia constitute the resurrected Rhodochortonaceae. For the Palmariales, transcriptome data solidly support the inclusion of Camontagnea and Rhodothamniella in the Rhodothamniellaceae, Meiodiscus and Rubrointrusa in the Meiodiscaceae, Rhodonematella and Rhodophysema in the Rhodophysemataceae, while Devaleraea and Palmaria remained in the Palmariaceae. These analyses, however, questioned the monophyly of Palmaria, which prompted a second round of analyses using eight common red algal phylogenetic markers and including a broader sampling of red algal genera in our analyses. These results supported transfer of Palmaria callophylloides and P. mollis to the genus Devaleraea necessitating new combinations, and further added the genus Halosaccion to the Palmariaceae and the genera Kallymenicola and Rhodophysemopsis to the Meiodiscaceae. Finally, DNA barcode (mitochondrial COI-5P) and ITS data were explored and supported the continued recognition of Palmaria palmata as a single species in the North Atlantic.


Assuntos
Filogenia , Rodófitas/classificação , Rodófitas/genética , Transcriptoma/genética , Sequência de Bases , Código de Barras de DNA Taxonômico , DNA Intergênico/genética , Funções Verossimilhança , Mitocôndrias/genética
15.
Genome Biol Evol ; 9(1): 48-63, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28175279

RESUMO

The enslavement of an alpha-proteobacterial endosymbiont by the last common eukaryotic ancestor resulted in large-scale gene transfer of endosymbiont genes to the host nucleus as the endosymbiont transitioned into the mitochondrion. Mitochondrial genomes have experienced widespread gene loss and genome reduction within eukaryotes and DNA sequencing has revealed that most of these gene losses occurred early in eukaryotic lineage diversification. On a broad scale, more recent modifications to organelle genomes appear to be conserved and phylogenetically informative. The first red algal mitochondrial genome was sequenced more than 20 years ago, and an additional 29 Florideophyceae mitochondria have been added over the past decade. A total of 32 genes have been described to have been missing or considered non-functional pseudogenes from these Florideophyceae mitochondria. These losses have been attributed to endosymbiotic gene transfer or the evolution of a parasitic life strategy. Here we sequenced the mitochondrial genomes from the red algal parasite Choreocolax polysiphoniae and its host Vertebrata lanosa and found them to be complete and conserved in structure with other Florideophyceae mitochondria. This result led us to resequence the previously published parasite Gracilariophila oryzoides and its host Gracilariopsis andersonii, as well as reevaluate reported gene losses from published Florideophyceae mitochondria. Multiple independent losses of rpl20 and a single loss of rps11 can be verified. However by reannotating published data and resequencing specimens when possible, we were able to identify the majority of genes that have been reported as lost or pseudogenes from Florideophyceae mitochondria.


Assuntos
Genoma Mitocondrial , Rodófitas/classificação , Rodófitas/genética , Evolução Molecular , Genes Mitocondriais , Anotação de Sequência Molecular , Rodófitas/citologia
16.
J Phycol ; 53(1): 1-6, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27704553

RESUMO

If ever there were "charismatic megaflora" of the sea, the Laminariales (kelp) would undoubtedly meet that designation. From the Northeast Pacific kelp forests to the less diverse, but nonetheless dense, kelp beds ranging from the Arctic to the cold temperate waters of the Southern Hemisphere, kelp provide habitat structure and food for a variety of productive marine systems. Consequently, kelp are well represented in the literature, however, understanding their evolution has proven challenging. We used a 152-gene phylogenomics approach to better resolve the phylogeny of the "derived" kelp families (viz., Agaraceae, Alariaceae, Laminariaceae, and Lessoniaceae). The formerly unresolved Egregia menziesii firmly joined a significantly expanded Arthrothamnaceae including Arthrothamnus, Cymathaere, Ecklonia, Macrocystis, Nereocystis, Pelagophycus, Postelsia, Pseudolessonia, Saccharina, and Streptophyllopsis, which rendered both the Laminariaceae and Lessoniaceae monogeneric. A published eight-gene alignment, the most marker-rich prior to this study, was expanded and analyzed to facilitate inclusion of Aureophycus. Although the topology was unchanged at the family level between the transcriptome data set relative to eight-gene analyses, the superior resolving power of the former was clearly established.


Assuntos
Proteínas de Algas/genética , Kelp/classificação , Kelp/genética , Transcriptoma , Filogenia , Análise de Sequência de DNA , Especificidade da Espécie
17.
J Phycol ; 51(2): 217-21, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26986516

RESUMO

Parasitism has evolved innumerable times among eukaryotes. Red algal parasites alone have independently evolved over 100 times. The accepted evolutionary paradigm proposes that red algal parasites arise by first infecting a close relative and over time diversifying and infecting more distantly related species. This provides a natural evolutionary gradient of relationships between hosts and parasites that share a photosynthetic common ancestor. Upon infection, the parasite deposits its organelles into the host cell and takes over, spreading through cell-cell connections. Microscopy and molecular studies have demonstrated that the parasites do not maintain their own plastid, but rather abscond with a dedifferentiated host plastid as they pack up spores for dispersal. We sequenced a ~90 kb plastid genome from the parasite Choreocolax polysiphoniae, which has lost genes for light harvesting and photosynthesis. Furthermore, the presence of a native C. polysiphoniae plastid indicates that not all red algal parasites follow the same evolutionary pathway to parasitism. Along with the 167 kb plastid genome of its host, Vertebrata lanosa, these plastids are the first to be sequenced from the Ceramiales.

18.
J Phycol ; 50(3): 526-42, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26988325

RESUMO

The freshwater red algal genus Batrachospermum has been shown to be paraphyletic since the first molecular studies of the Batrachospermales. Previous research, along with this study, provides strong support for the clade Batrachospermum section Helminthoidea. This study has found that heterocortication, the presence of both cylindrical and bulbous cells on the main axis, is an underlying synapomorphy of this clade. Based on support from DNA sequences of the rbcL gene, the COI barcode region and the rDNA ITS 1 and 2, along with morphological studies, the new genus Sheathia is proposed. Seven heterocorticate species were recognized from the molecular clades. Sheathia boryana and S. exigua sp. nov. appear to be restricted to Europe, whereas S. confusa occurs in Europe and New Zealand. Sheathia involuta is widespread in the USA and reported for the first time from Europe. Sheathia americana sp. nov., has been collected in the USA and Canada, and S. heterocortica and S. grandis sp. nov. have been collected only in the USA. Sheathia confusa and S. grandis can be distinguished based on morphological characters, whereas DNA sequence data are required to conclusively distinguish the other species. Sheathia fluitans and S. carpoinvolucra also are placed within this genus based on the presence of heterocortication. These data also hint at greater diversity among non-heterocorticate Sheathia than is recognized by the single species name S. arcuata.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA