Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 243(1): 132-144, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38742309

RESUMO

Nutrient limitation may constrain the ability of recovering and mature tropical forests to serve as a carbon sink. However, it is unclear to what extent trees can utilize nutrient acquisition strategies - especially root phosphatase enzymes and mycorrhizal symbioses - to overcome low nutrient availability across secondary succession. Using a large-scale, full factorial nitrogen and phosphorus fertilization experiment of 76 plots along a secondary successional gradient in lowland wet tropical forests of Panama, we tested the extent to which root phosphatase enzyme activity and mycorrhizal colonization are flexible, and if investment shifts over succession, reflective of changing nutrient limitation. We also conducted a meta-analysis to test how tropical trees adjust these strategies in response to nutrient additions and across succession. We find that tropical trees are dynamic, adjusting investment in strategies - particularly root phosphatase - in response to changing nutrient conditions through succession. These changes reflect a shift from strong nitrogen to weak phosphorus limitation over succession. Our meta-analysis findings were consistent with our field study; we found more predictable responses of root phosphatase than mycorrhizal colonization to nutrient availability. Our findings suggest that nutrient acquisition strategies respond to nutrient availability and demand in tropical forests, likely critical for alleviating nutrient limitation.


Assuntos
Florestas , Micorrizas , Nitrogênio , Nutrientes , Fósforo , Árvores , Clima Tropical , Fósforo/metabolismo , Nitrogênio/metabolismo , Micorrizas/fisiologia , Nutrientes/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Monoéster Fosfórico Hidrolases/metabolismo , Panamá
2.
J Chem Ecol ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38809282

RESUMO

Plant-microbe interactions play a pivotal role in shaping host fitness, especially concerning chemical defense mechanisms. In cycads, establishing direct correlations between specific endophytic microbes and the synthesis of highly toxic defensive phytochemicals has been challenging. Our research delves into the intricate relationship between plant-microbe associations and the variation of secondary metabolite production in two closely related Zamia species that grow in distinct habitats; terrestrial and epiphytic. Employing an integrated approach, we combined microbial metabarcoding, which characterize the leaf endophytic bacterial and fungal communities, with untargeted metabolomics to test if the relative abundances of specific microbial taxa in these two Zamia species were associated with different metabolome profiles. The two species studied shared approximately 90% of the metabolites spanning diverse biosynthetic pathways: alkaloids, amino acids, carbohydrates, fatty acids, polyketides, shikimates, phenylpropanoids, and terpenoids. Co-occurrence networks revealed positive associations among metabolites from different pathways, underscoring the complexity of their interactions. Our integrated analysis demonstrated to some degree that the intraspecific variation in metabolome profiles of the two host species was associated with the abundance of bacterial orders Acidobacteriales and Frankiales, as well as the fungal endophytes belonging to the orders Chaetothyriales, Glomerellales, Heliotiales, Hypocreales, and Sordariales. We further associate individual metabolic similarity with four specific fungal endophyte members of the core microbiota, but no specific bacterial taxa associations were identified. This study represents a pioneering investigation to characterize leaf endophytes and their association with metabolomes in tropical gymnosperms, laying the groundwork for deeper inquiries into this complex domain.

3.
bioRxiv ; 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36993716

RESUMO

Widespread species often harbor unrecognized genetic diversity, and investigating the factors associated with such cryptic variation can help us better understand the forces driving diversification. Here, we identify potential cryptic species based on a comprehensive dataset of COI mitochondrial DNA barcodes from 2,333 individual Panamanian birds across 429 species, representing 391 (59%) of the 659 resident landbird species of the country, as well as opportunistically sampled waterbirds. We complement this dataset with additional publicly available mitochondrial loci, such as ND2 and cytochrome b, obtained from whole mitochondrial genomes from 20 taxa. Using barcode identification numbers (BINs), we find putative cryptic species in 19% of landbird species, highlighting hidden diversity in the relatively well-described avifauna of Panama. Whereas some of these mitochondrial divergence events corresponded with recognized geographic features that likely isolated populations, such as the Cordillera Central highlands, the majority (74%) of lowland splits were between eastern and western populations. The timing of these splits are not temporally coincident across taxa, suggesting that historical events, such as the formation of the Isthmus of Panama and Pleistocene climatic cycles, were not the primary drivers of cryptic diversification. Rather, we observed that forest species, understory species, insectivores, and strongly territorial species-all traits associated with lower dispersal ability-were all more likely to have multiple BINs in Panama, suggesting strong ecological associations with cryptic divergence. Additionally, hand-wing index, a proxy for dispersal capability, was significantly lower in species with multiple BINs, indicating that dispersal ability plays an important role in generating diversity in Neotropical birds. Together, these results underscore the need for evolutionary studies of tropical bird communities to consider ecological factors along with geographic explanations, and that even in areas with well-known avifauna, avian diversity may be substantially underestimated.


Especies extendidas frecuentemente tiene diversidad genética no reconocida, y investigando los factores asociados con esta variación críptica puede ayudarnos a entender las fuerzas que impulsan la diversificación. Aquí, identificamos especies crípticas potenciales basadas en un conjunto de datos de códigos de barras de ADN mitocondrial de 2,333 individuos de aves de Panama en 429 especies, representando 391 (59%) de las 659 especies de aves terrestres residentes del país, además de algunas aves acuáticas muestreada de manera oportunista. Adicionalmente, complementamos estos datos con secuencias mitocondriales disponibles públicamente de otros loci, tal como ND2 o citocroma b, obtenidos de los genomas mitocondriales completos de 20 taxones. Utilizando los números de identificación de código de barras (en ingles: BINs), un sistema taxonómico numérico que proporcina una estimación imparcial de la diversidad potencial a nivel de especie, encontramos especies crípticas putativas en 19% de las especies de aves terrestres, lo que destaca la diversidad oculta en la avifauna bien descrita de Panamá. Aunque algunos de estos eventos de divergencia conciden con características geográficas que probablemente aislaron las poblaciones, la mayoría (74%) de la divergencia en las tierras bajas se encuentra entre las poblaciones orientales y occidentales. El tiempo de esta divergencia no coincidió entre los taxones, sugiriendo que eventos históricos tales como la formación del Istmo de Panamá y los ciclos climáticos del pleistoceno, no fueron los principales impulsores de la especiación. En cambio, observamos asociaciones fuertes entre las características ecológicas y la divergencia mitocondriale: las especies del bosque, sotobosque, con una dieta insectívora, y con territorialidad fuerte mostraton múltiple BINs probables. Adicionalmente, el índice mano-ala, que está asociado a la capacidad de dispersión, fue significativamente menor en las especies con BINs multiples, sugiriendo que la capacidad de dispersión tiene un rol importamente en la generación de la diversidad de las aves neotropicales. Estos resultos demonstran la necesidad de que estudios evolutivos de las comunidades de aves tropicales consideren los factores ecológicos en conjunto con las explicaciones geográficos.

4.
Ecol Evol ; 13(1): e9675, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36726876

RESUMO

Interoceanic canals can facilitate biological invasions as they connect the world's oceans and remove dispersal barriers between bioregions. As a consequence, multiple opportunities for biotic exchange arise and the resulting establishment of migrant species often causes adverse ecological and economic impacts. The Panama Canal is a key region for biotic exchange as it connects the Pacific and Atlantic Oceans in Central America. In this study, we used two complementary methods (environmental DNA (eDNA) metabarcoding and gillnetting) to survey fish communities in this unique waterway. Using COI (cytochrome oxidase subunit I) metabarcoding, we detected a total of 142 fish species, including evidence for the presence of sixteen Atlantic and eight Pacific marine fish in different freshwater sections of the Canal. Of these, nine are potentially new records. Molecular data did not capture all species caught with gillnets, but generally provided a more complete image of the known fish fauna as more small-bodied fish species were detected. Diversity indices based on eDNA surveys revealed significant differences across different sections of the Canal reflecting in part the prevailing environmental conditions. The observed increase in the presence of marine fish species in the Canal indicates a growing potential for interoceanic fish invasions. The potential ecological and evolutionary consequences of this increase in marine fishes are not only restricted to the fish fauna in the Canal as they could also impact adjacent ecosystems in the Pacific and Atlantic Oceans.

6.
Nat Microbiol ; 7(10): 1650-1660, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36065063

RESUMO

Perturbation of soil microbial communities by rising temperatures could have important consequences for biodiversity and future climate, particularly in tropical forests where high biological diversity coincides with a vast store of soil carbon. We carried out a 2-year in situ soil warming experiment in a tropical forest in Panama and found large changes in the soil microbial community and its growth sensitivity, which did not fully explain observed large increases in CO2 emission. Microbial diversity, especially of bacteria, declined markedly with 3 to 8 °C warming, demonstrating a breakdown in the positive temperature-diversity relationship observed elsewhere. The microbial community composition shifted with warming, with many taxa no longer detected and others enriched, including thermophilic taxa. This community shift resulted in community adaptation of growth to warmer temperatures, which we used to predict changes in soil CO2 emissions. However, the in situ CO2 emissions exceeded our model predictions threefold, potentially driven by abiotic acceleration of enzymatic activity. Our results suggest that warming of tropical forests will have rapid, detrimental consequences both for soil microbial biodiversity and future climate.


Assuntos
Microbiologia do Solo , Solo , Carbono , Dióxido de Carbono/metabolismo , Respiração
7.
Ecol Evol ; 12(3): e8769, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35356569

RESUMO

Epiphytic lifestyles have evolved independently in ecologically, morphologically, and taxonomically diverse plant species. Although this adaptation is widespread among angiosperms, it is only known to have arisen in a single gymnosperm species, Zamia pseudoparasitica (Cycadophyta). Zamia pseudoparasitica is endemic to the mountains of Western Panama, and little is known about the ecology of this unusual cycad. Here, we provide the first report of a potential seed disperser of Z. pseudoparasitica. Between late October 2019 and March 2020, we conducted arboreal camera trapping at three sites along the Talamanca Cordillera in Western Panama, yielding an accumulated survey effort of 271 camera days. Weekly direct observations were also performed using handheld binoculars at one site. Arboreal camera trapping revealed at least seven mammal species that visit this epiphytic cycad. At all three sites, the Northern olingo (Bassaricyon gabbii) was seen visiting individuals of Z. pseudoparasitica repeatedly, both while cones were closed and after they had opened. We estimated the time-varying intensity of the visits throughout our sampling and used mixed models to compare the length of visits when cones were closed versus when they were open. Both duration and time-varying intensity of visits increased after cones had opened and we documented Northern olingo removing and carrying away seeds. We also observed predation by the yellow-eared toucanet (Selenidera spectabilis) which picked and destroyed mature Z. pseudoparasitica seeds. These results suggest that the Northern olingo could be an important seed dispersal agent for this rare epiphytic gymnosperm.

8.
Sci Rep ; 11(1): 21752, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34741067

RESUMO

Land use is known to affect water quality yet the impact it has on aquatic microbial communities in tropical systems is poorly understood. We used 16S metabarcoding to assess the impact of land use on bacterial communities in the water column of four streams in central Panama. Each stream was influenced by a common Neotropical land use: mature forest, secondary forest, silvopasture and traditional cattle pasture. Bacterial community diversity and composition were significantly influenced by nearby land uses. Streams bordered by forests had higher phylogenetic diversity (Faith's PD) and similar community structure (based on weighted UniFrac distance), whereas the stream surrounded by traditional cattle pasture had lower diversity and unique bacterial communities. The silvopasture stream showed strong seasonal shifts, with communities similar to forested catchments during the wet seasons and cattle pasture during dry seasons. We demonstrate that natural forest regrowth and targeted management, such as maintaining and restoring riparian corridors, benefit stream-water microbiomes in tropical landscapes and can provide a rapid and efficient approach to balancing agricultural activities and water quality protection.

9.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33836596

RESUMO

Legume trees form an abundant and functionally important component of tropical forests worldwide with N2-fixing symbioses linked to enhanced growth and recruitment in early secondary succession. However, it remains unclear how N2-fixers meet the high demands for inorganic nutrients imposed by rapid biomass accumulation on nutrient-poor tropical soils. Here, we show that N2-fixing trees in secondary Neotropical forests triggered twofold higher in situ weathering of fresh primary silicates compared to non-N2-fixing trees and induced locally enhanced nutrient cycling by the soil microbiome community. Shotgun metagenomic data from weathered minerals support the role of enhanced nitrogen and carbon cycling in increasing acidity and weathering. Metagenomic and marker gene analyses further revealed increased microbial potential beneath N2-fixers for anaerobic iron reduction, a process regulating the pool of phosphorus bound to iron-bearing soil minerals. We find that the Fe(III)-reducing gene pool in soil is dominated by acidophilic Acidobacteria, including a highly abundant genus of previously undescribed bacteria, Candidatus Acidoferrum, genus novus. The resulting dependence of the Fe-cycling gene pool to pH determines the high iron-reducing potential encoded in the metagenome of the more acidic soils of N2-fixers and their nonfixing neighbors. We infer that by promoting the activities of a specialized local microbiome through changes in soil pH and C:N ratios, N2-fixing trees can influence the wider biogeochemical functioning of tropical forest ecosystems in a manner that enhances their ability to assimilate and store atmospheric carbon.


Assuntos
Fabaceae/microbiologia , Florestas , Microbiota/fisiologia , Minerais/metabolismo , Nutrientes/metabolismo , Clima Tropical , Acidobacteria/classificação , Acidobacteria/genética , Acidobacteria/metabolismo , Biomassa , Carbono/análise , Fabaceae/crescimento & desenvolvimento , Fabaceae/metabolismo , Compostos Férricos/metabolismo , Concentração de Íons de Hidrogênio , Microbiota/genética , Minerais/análise , Nitrogênio/análise , Nitrogênio/metabolismo , Fixação de Nitrogênio , Nutrientes/análise , Panamá , Fósforo/metabolismo , Silicatos/análise , Silicatos/metabolismo , Solo/química , Microbiologia do Solo , Simbiose , Árvores/crescimento & desenvolvimento , Árvores/metabolismo , Árvores/microbiologia
10.
mBio ; 11(5)2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33109755

RESUMO

Phosphorus (P) is an essential nutrient that is often in limited supply, with P availability constraining biomass production in many terrestrial ecosystems. Despite decades of work on plant responses to P deficiency and the importance of soil microbes to terrestrial ecosystem processes, how soil microbes respond to, and cope with, P deficiencies remains poorly understood. We studied 583 soils from two independent sample sets that each span broad natural gradients in extractable soil P and collectively represent diverse biomes, including tropical forests, temperate grasslands, and arid shrublands. We paired marker gene and shotgun metagenomic analyses to determine how soil bacterial and archaeal communities respond to differences in soil P availability and to detect corresponding shifts in functional attributes. We identified microbial taxa that are consistently responsive to extractable soil P, with those taxa found in low P soils being more likely to have traits typical of oligotrophic life history strategies. Using environmental niche modeling of genes and gene pathways, we found an enriched abundance of key genes in low P soils linked to the carbon-phosphorus (C-P) lyase and phosphonotase degradation pathways, along with key components of the high-affinity phosphate-specific transporter (Pst) and phosphate regulon (Pho) systems. Taken together, these analyses suggest that catabolism of phosphonates is an important strategy used by bacteria to scavenge phosphate in P-limited soils. Surprisingly, these same pathways are important for bacterial growth in P-limited marine waters, highlighting the shared metabolic strategies used by both terrestrial and marine microbes to cope with P limitation.


Assuntos
Bactérias/metabolismo , Fósforo/metabolismo , Microbiologia do Solo , Bactérias/classificação , Ecossistema , Florestas , Metagenoma , Metagenômica , Consórcios Microbianos , Nitrogênio/metabolismo
11.
Insects ; 11(9)2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32878094

RESUMO

Insects host a highly diverse microbiome, which plays a crucial role in insect life. However, the composition and diversity of microbiomes associated with Neotropical freshwater insects is virtually unknown. In addition, the extent to which diversification of this microbiome is associated with host phylogenetic divergence remains to be determined. Here, we present the first comprehensive analysis of bacterial communities associated with six closely related species of Neotropical water striders in Panama. We used comparative phylogenetic analyses to assess associations between dominant bacterial linages and phylogenetic divergence among species of water striders. We found a total of 806 16S rRNA amplicon sequence variants (ASVs), with dominant bacterial taxa belonging to the phyla Proteobacteria (76.87%) and Tenericutes (19.51%). Members of the α- (e.g., Wolbachia) and γ- (e.g., Acinetobacter, Serratia) Proteobacteria, and Mollicutes (e.g., Spiroplasma) were predominantly shared across species, suggesting the presence of a core microbiome in water striders. However, some bacterial lineages (e.g., Fructobacillus, Fluviicola and Chryseobacterium) were uniquely associated with different water strider species, likely representing a distinctive feature of each species' microbiome. These findings indicate that both host identity and environmental context are important drivers of microbiome diversity in water striders. In addition, they suggest that diversification of the microbiome is associated with diversification in water striders. Although more research is needed to establish the evolutionary consequences of host-microbiome interaction in water striders, our findings support recent work highlighting the role of bacterial community host-microbiome codiversification.

13.
PLoS One ; 14(9): e0222145, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31491005

RESUMO

The microbiome plays a key role in the biology, ecology and evolution of arthropod vectors of human pathogens. Vector-bacterial interactions could alter disease transmission dynamics through modulating pathogen replication and/or vector fitness. Nonetheless, our understanding of the factors shaping the bacterial community in arthropod vectors is incomplete. Using large-scale 16S amplicon sequencing, we examine how habitat disturbance structures the bacterial assemblages of field-collected whole-body hematophagous arthropods that vector human pathogens including mosquitoes (Culicidae), sand flies (Psychodidae), biting midges (Ceratopogonidae) and hard ticks (Ixodidae). We found that all comparisons of the bacterial community among species yielded statistically significant differences, but a difference was not observed between adults and nymphs of the hard tick, Haemaphysalis juxtakochi. While Culicoides species had the most distinct bacterial community among dipterans, tick species were composed of entirely different bacterial OTU's. We observed differences in the proportions of some bacterial types between pristine and disturbed habitats for Coquillettidia mosquitoes, Culex mosquitoes, and Lutzomyia sand flies, but their associations differed within and among arthropod assemblages. In contrast, habitat quality was a poor predictor of differences in bacterial classes for Culicoides biting midges and hard tick species. In general, similarities in the bacterial communities among hematophagous arthropods could be explained by their phylogenetic relatedness, although intraspecific variation seems influenced by habitat disturbance.


Assuntos
Artrópodes/microbiologia , Bactérias/isolamento & purificação , Ecossistema , Clima Tropical , Animais , Bactérias/genética , Biodiversidade , Vetores de Doenças , Microbiota , RNA Ribossômico 16S/genética , Especificidade da Espécie
14.
Sci Rep ; 9(1): 12160, 2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31434963

RESUMO

Aedes aegypti and Aedes albopictus develop in the same aquatic sites where they encounter microorganisms that influence their life history and capacity to transmit human arboviruses. Some bacteria such as Wolbachia are currently being considered for the control of Dengue, Chikungunya and Zika. Yet little is known about the dynamics and diversity of Aedes-associated bacteria, including larval habitat features that shape their tempo-spatial distribution. We applied large-scale 16S rRNA amplicon sequencing to 960 adults and larvae of both Ae. aegypti and Ae. albopictus mosquitoes from 59 sampling sites widely distributed across nine provinces of Panama. We find both species share a limited, yet highly variable core microbiota, reflecting high stochasticity within their oviposition habitats. Despite sharing a large proportion of microbiota, Ae. aegypti harbours higher bacterial diversity than Ae. albopictus, primarily due to rarer bacterial groups at the larval stage. We find significant differences between the bacterial communities of larvae and adult mosquitoes, and among samples from metal and ceramic containers. However, we find little support for geography, water temperature and pH as predictors of bacterial associates. We report a low incidence of natural Wolbachia infection for both Aedes and its geographical distribution. This baseline information provides a foundation for studies on the functions and interactions of Aedes-associated bacteria with consequences for bio-control within Panama.


Assuntos
Aedes/microbiologia , Bactérias/crescimento & desenvolvimento , Microbiota , Aedes/crescimento & desenvolvimento , Animais , Bactérias/genética , Vetores de Doenças , Ecossistema , Concentração de Íons de Hidrogênio , Larva/microbiologia , Panamá , Análise de Componente Principal , RNA Ribossômico 16S/química , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Análise de Sequência de DNA , Temperatura , Água/química , Wolbachia/genética , Wolbachia/crescimento & desenvolvimento
15.
J Microbiol ; 57(10): 842-851, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31377982

RESUMO

Fungus-growing ants share a complex symbiosis with microbes, including fungal mutualists, antibiotic-producing bacteria, and fungal pathogens. The bacterial communities associated with this symbiosis are poorly understood but likely play important roles in maintaining the health and function of fungal gardens. We studied bacterial communities in gardens of two Apterostigma species, A. dentigerum, and A. pilosum, using next-generation sequencing to evaluate differences between the two ant species, their veiled and no-veiled fungal garden types, and across three collection locations. We also compared different parts of nests to test for homogeneity within nests. Enterobacteriaceae dominated gardens of both species and common OTUs were shared across both species and nest types. However, differences in community diversity were detected between ant species, and in the communities of A. dentigerum veiled and no-veiled nests within sites. Apterostigma pilosum had a higher proportion of Phyllobacteriaceae and differed from A. dentigerum in the proportions of members of the order Clostridiales. Within A. dentigerum, nests with veiled and no-veiled fungus gardens had similar taxonomic profiles but differed in the relative abundance of some groups, with veiled gardens having more Rhodospirillaceae and Hyphomicrobiaceae, and no-veiled having more Xanthomonadaceae and certain genera in the Enterobacteriaceae C. However, bacterial communities in Apterostigma fungal gardens are highly conserved and resemble those of the nests of other attine ants with dominant taxa likely playing a role in biomass degradation and defense. Further work is required to understand and explain how bacterial community composition of fungus-growing nests is maintained.


Assuntos
Formigas/microbiologia , Fungos/isolamento & purificação , Microbiota , Animais , Formigas/classificação , Formigas/fisiologia , Fungos/classificação , Fungos/genética , Fungos/fisiologia , Jardins , Filogenia , Simbiose
16.
Parasitology ; 146(7): 928-936, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30859923

RESUMO

Pathogens are increasingly implicated in amphibian declines but less is known about parasites and the role they play. We focused on a genus of nematodes (Rhabdias) that is widespread in amphibians and examined their genetic diversity, abundance (prevalence and intensity), and impact in a common toad (Rhinella horribilis) in Panama. Our molecular data show that toads were infected by at least four lineages of Rhabdias, most likely Rhabdias pseudosphaerocephala, and multiple lineages were present in the same geographic locality, the same host and even the same lung. Mean prevalence of infection per site was 63% and mean intensity of infection was 31 worms. There was a significant effect of host size on infection status in the wild: larger toads were more likely to be infected than were smaller conspecifics. Our experimental infections showed that toadlets that were penetrated by many infective Rhabdias larvae grew less than those who were penetrated by few larvae. Exposure to Rhabdias reduced toadlet locomotor performance (both sustained speed and endurance) but did not influence toadlet survival. The effects of Rhabdias infection on their host appear to be primarily sublethal, however, dose-dependent reduction in growth and an overall impaired locomotor performance still represents a significant reduction in host fitness.


Assuntos
Bufo bufo/parasitologia , Pulmão/parasitologia , Rhabdiasoidea/genética , Animais , Bufo bufo/crescimento & desenvolvimento , Feminino , Variação Genética , Locomoção , Pulmão/patologia , Masculino , Panamá , Contagem de Ovos de Parasitas , Prevalência , Rhabdiasoidea/patogenicidade
17.
Am J Bot ; 106(1): 29-41, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30633812

RESUMO

PREMISE OF THE STUDY: Hybridization between previously isolated species or lineages can stimulate invasiveness because of increased genetic diversity and inherited traits facilitating competitive and reproductive potential. We evaluated differences in stand characteristics and sexual and vegetative reproduction among native, introduced, and hybrid Phragmites australis lineages in the southwestern United States. We also assessed the degree of hybridization among lineages and backcrossing of hybrids with parental lineages. METHODS: Growth and morphological characteristics were measured in native, introduced, and hybrid Phragmites stands to evaluate relative cover and dominance in associated plant communities. Panicles were collected from stands to evaluate germination, dormancy, and differences in seed traits. Seedlings from germination trials were genotyped to determine frequency of crossing and backcrossing among lineages. KEY RESULTS: Introduced and hybrid Phragmites stands had significantly greater stem and panicle densities than native stands and were more likely to be dominant members of their respective plant communities. Hybrid seed outputs were significantly greater, but hybrid seeds had lower germination rates than those from native and introduced lineages. We detected a novel hybridization event between native and introduced lineages, but found no strong evidence of hybrids backcrossing with parental lineages. CONCLUSIONS: Hybrid Phragmites in the Southwest exhibits reproductive, genetic, and morphological characteristics from both parental lineages that facilitate dispersal, establishment, and aggressive growth, including high reproductive output, rhizome viability, and aboveground biomass, with smaller seeds and greater genetic diversity than its progenitors. Our results show hybrids can inherit traits that confer invasiveness and provide insight for managing this species complex and other cryptic species with native and introduced variants with potential for intraspecific hybridization.


Assuntos
Hibridização Genética , Poaceae/fisiologia , Biomassa , Germinação , Dormência de Plantas , Poaceae/anatomia & histologia , Reprodução , Rizoma/fisiologia , Sementes/crescimento & desenvolvimento
18.
Mol Ecol Resour ; 17(6): e133-e145, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28758342

RESUMO

Metabarcoding of vertebrate DNA derived from carrion flies has been proposed as a promising tool for biodiversity monitoring. To evaluate its efficacy, we conducted metabarcoding surveys of carrion flies on Barro Colorado Island (BCI), Panama, which has a well-known mammal community, and compared our results against diurnal transect counts and camera trapping. We collected 1,084 flies in 29 sampling days, conducted metabarcoding with mammal-specific (16S) and vertebrate-specific (12S) primers, and sequenced amplicons on Illumina MiSeq. For taxonomic assignment, we compared blast with the new program protax, and we found that protax improved species identifications. We detected 20 mammal, four bird, and one lizard species from carrion fly metabarcoding, all but one of which are known from BCI. Fly metabarcoding detected more mammal species than concurrent transect counts (29 sampling days, 13 species) and concurrent camera trapping (84 sampling days, 17 species), and detected 67% of the number of mammal species documented by 8 years of transect counts and camera trapping combined, although fly metabarcoding missed several abundant species. This study demonstrates that carrion fly metabarcoding is a powerful tool for mammal biodiversity surveys and has the potential to detect a broader range of species than more commonly used methods.


Assuntos
Ração Animal/análise , Código de Barras de DNA Taxonômico/métodos , DNA/genética , Dípteros/fisiologia , Comportamento Alimentar , Mamíferos/classificação , Metagenômica/métodos , Animais , Biodiversidade , DNA/isolamento & purificação , Mamíferos/genética , Panamá
19.
Am J Phys Anthropol ; 161(1): 181-5, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27393125

RESUMO

OBJECTIVES: We explored whether variation in the sweet taste receptor protein T1R3 in primates could contribute to differences in sweet taste repertoire among species, potentially reflecting coevolution with local plants. Specifically, we examined which primates are likely to be sweet "tasters" of brazzein, a protein found in the fruit of the African plant Pentadiplandra brazzeana that tastes intensely sweet to humans, but provides little energy. Sweet proteins like brazzein are thought to mimic the taste of sugars to entice seed dispersers. We examined the evolution of T1R3 and assessed whether primates are likely "deceived" by such biochemical mimicry. METHODS: Using published and new sequence data for TAS1R3, we characterized 57 primates and other mammals at the two amino acid sites necessary to taste brazzein to determine which species are tasters. We further used dN/dS-based methods to look for statistical evidence of accelerated evolution in this protein across primate lineages. RESULTS: The taster genotype is shared across most catarrhines, suggesting that most African primates can be "tricked" into eating and dispersing P. brazzeana's seeds for little caloric gain. Western gorillas (Gorilla gorilla), however, exhibit derived mutations at the two brazzein-critical positions, and although fruit is a substantial portion of the western gorilla diet, they have not been observed to eat P. brazzeana. Our analyses of protein evolution found no signature of positive selection on TAS1R3 along the gorilla lineage. DISCUSSION: We propose that the gorilla-specific mutations at the TAS1R3 locus encoding T1R3 could be a counter-adaptation to the false sweet signal of brazzein.


Assuntos
Evolução Biológica , Gorilla gorilla , Magnoliopsida/fisiologia , Proteínas de Plantas/fisiologia , Receptores Acoplados a Proteínas G , Paladar , Animais , Antropologia Física , Gorilla gorilla/genética , Gorilla gorilla/fisiologia , Humanos , Primatas/genética , Primatas/fisiologia , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/fisiologia , Dispersão de Sementes , Paladar/genética , Paladar/fisiologia
20.
Parasitology ; 142(5): 675-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25394910

RESUMO

The pentastomid parasite, Raillietiella frenata, is native to Asia where it infects the Asian House gecko, Hemidactylus frenatus. This gecko has been widely introduced and recently R. frenata was found in introduced populations of cane toads (Rhinella marina) in Australia, indicating a host-switch from introduced geckos to toads. Here we report non-native adult R. frenata infecting the lungs of native cane toads in Panama. Eight of 64 toads were infected (median = 2.5, range = 1-80 pentastomids/toad) and pentastomid prevalence was positively associated with the number of buildings at a site, though further sampling is needed to confirm this pattern. We postulate that this pattern is likely due to a host shift of this parasite from an urban-associated introduced gecko. This is the first record of this parasite infecting cane toads in their native range, and the first instance of this parasite occurring in Central America.


Assuntos
Bufo marinus/parasitologia , Espécies Introduzidas , Pneumopatias Parasitárias/veterinária , Doenças Parasitárias em Animais/parasitologia , Pentastomídeos/classificação , Animais , Feminino , Pneumopatias Parasitárias/epidemiologia , Pneumopatias Parasitárias/parasitologia , Masculino , Panamá/epidemiologia , Doenças Parasitárias em Animais/epidemiologia , Pentastomídeos/anatomia & histologia , Pentastomídeos/genética , Prevalência , Reforma Urbana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA