Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Nat Commun ; 15(1): 4273, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769103

RESUMO

Sex-specific traits and behaviors emerge during development by the acquisition of unique properties in the nervous system of each sex. However, the genetic events responsible for introducing these sex-specific features remain poorly understood. In this study, we create a comprehensive gene expression atlas of pure populations of hermaphrodites and males of the nematode Caenorhabditis elegans across development. We discover numerous differentially expressed genes, including neuronal gene families like transcription factors, neuropeptides, and G protein-coupled receptors. We identify INS-39, an insulin-like peptide, as a prominent male-biased gene expressed specifically in ciliated sensory neurons. We show that INS-39 serves as an early-stage male marker, facilitating the effective isolation of males in high-throughput experiments. Through complex and sex-specific regulation, ins-39 plays pleiotropic sexually dimorphic roles in various behaviors, while also playing a shared, dimorphic role in early life stress. This study offers a comparative sexual and developmental gene expression database for C. elegans. Furthermore, it highlights conserved genes that may underlie the sexually dimorphic manifestation of different human diseases.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Caracteres Sexuais , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Masculino , Feminino , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Células Receptoras Sensoriais/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Perfilação da Expressão Gênica
2.
Nat Commun ; 14(1): 7066, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37923706

RESUMO

Molecular chaperones are essential cellular components that aid in protein folding and preventing the abnormal aggregation of disease-associated proteins. Mutations in one such chaperone, DNAJB6, were identified in patients with LGMDD1, a dominant autosomal disorder characterized by myofibrillar degeneration and accumulations of aggregated protein within myocytes. The molecular mechanisms through which such mutations cause this dysfunction, however, are not well understood. Here we employ a combination of solution NMR and biochemical assays to investigate the structural and functional changes in LGMDD1 mutants of DNAJB6. Surprisingly, we find that DNAJB6 disease mutants show no reduction in their aggregation-prevention activity in vitro, and instead differ structurally from the WT protein, affecting their interaction with Hsp70 chaperones. While WT DNAJB6 contains a helical element regulating its ability to bind and activate Hsp70, in LGMDD1 disease mutants this regulation is disrupted. These variants can thus recruit and hyperactivate Hsp70 chaperones in an unregulated manner, depleting Hsp70 levels in myocytes, and resulting in the disruption of proteostasis. Interfering with DNAJB6-Hsp70 binding, however, reverses the disease phenotype, suggesting future therapeutic avenues for LGMDD1.


Assuntos
Mutação com Ganho de Função , Chaperonas Moleculares , Humanos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Dobramento de Proteína , Proteínas do Tecido Nervoso/genética
3.
PLoS Genet ; 19(11): e1011061, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38032985

RESUMO

[This corrects the article DOI: 10.1371/journal.pgen.1004747.].

4.
Curr Opin Neurobiol ; 82: 102757, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37572555

RESUMO

Many animal behaviors are manifested differently in the two sexes of a given species, but how such sexual dimorphism is imprinted in the nervous system is not always clear. One mechanism involved is synaptic dimorphism, by which the same neurons exist in the two sexes, but form synapses that differ in features such as anatomy, molecular content or fate. While some evidence for synaptic dimorphism exists in humans and mammals, identifying these mechanisms in invertebrates has proven simpler, due to their smaller nervous systems and absence of external regulation by sex hormones. This review aims to present the current status of the field in invertebrates, the available toolkit for the study of synaptic dimorphism, and the standing questions that still remain incompletely answered.


Assuntos
Invertebrados , Caracteres Sexuais , Animais , Humanos , Neurônios/fisiologia , Sinapses/fisiologia , Mamíferos
5.
Nat Commun ; 13(1): 6825, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36369281

RESUMO

How sensory perception is processed by the two sexes of an organism is still only partially understood. Despite some evidence for sexual dimorphism in auditory and olfactory perception, whether touch is sensed in a dimorphic manner has not been addressed. Here we find that the neuronal circuit for tail mechanosensation in C. elegans is wired differently in the two sexes and employs a different combination of sex-shared sensory neurons and interneurons in each sex. Reverse genetic screens uncovered cell- and sex-specific functions of the alpha-tubulin mec-12 and the sodium channel tmc-1 in sensory neurons, and of the glutamate receptors nmr-1 and glr-1 in interneurons, revealing the underlying molecular mechanisms that mediate tail mechanosensation. Moreover, we show that only in males, the sex-shared interneuron AVG is strongly activated by tail mechanical stimulation, and accordingly is crucial for their behavioral response. Importantly, sex reversal experiments demonstrate that the sexual identity of AVG determines both the behavioral output of the mechanosensory response and the molecular pathways controlling it. Our results present extensive sexual dimorphism in a mechanosensory circuit at both the cellular and molecular levels.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Masculino , Feminino , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Interneurônios/metabolismo , Células Receptoras Sensoriais/metabolismo , Caracteres Sexuais , Canais Iônicos/genética , Canais Iônicos/metabolismo
6.
Curr Biol ; 32(20): 4372-4385.e7, 2022 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-36075218

RESUMO

The effect of the detailed connectivity of a neural circuit on its function and the resulting behavior of the organism is a key question in many neural systems. Here, we study the circuit for nociception in C. elegans, which is composed of the same neurons in the two sexes that are wired differently. We show that the nociceptive sensory neurons respond similarly in the two sexes, yet the animals display sexually dimorphic behaviors to the same aversive stimuli. To uncover the role of the downstream network topology in shaping behavior, we learn and simulate network models that replicate the observed dimorphic behaviors and use them to predict simple network rewirings that would switch behavior between the sexes. We then show experimentally that these subtle synaptic rewirings indeed flip behavior. Interestingly, when presented with aversive cues, rewired males were compromised in finding mating partners, suggesting that network topologies that enable efficient avoidance of noxious cues have a reproductive "cost." Our results present a deconstruction of the design of a neural circuit that controls sexual behavior and how to reprogram it.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Masculino , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/fisiologia , Nociceptividade , Sistema Nervoso , Células Receptoras Sensoriais/fisiologia
7.
Elife ; 102021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34477553

RESUMO

Understanding the molecular events that regulate cell pluripotency versus acquisition of differentiated somatic cell fate is fundamentally important. Studies in Caenorhabditis elegans demonstrate that knockout of the germline-specific translation repressor gld-1 causes germ cells within tumorous gonads to form germline-derived teratoma. Previously we demonstrated that endoplasmic reticulum (ER) stress enhances this phenotype to suppress germline tumor progression(Levi-Ferber et al., 2015). Here, we identify a neuronal circuit that non-autonomously suppresses germline differentiation and show that it communicates with the gonad via the neurotransmitter serotonin to limit somatic differentiation of the tumorous germline. ER stress controls this circuit through regulated inositol requiring enzyme-1 (IRE-1)-dependent mRNA decay of transcripts encoding the neuropeptide FLP-6. Depletion of FLP-6 disrupts the circuit's integrity and hence its ability to prevent somatic-fate acquisition by germline tumor cells. Our findings reveal mechanistically how ER stress enhances ectopic germline differentiation and demonstrate that regulated Ire1-dependent decay can affect animal physiology by controlling a specific neuronal circuit.


Assuntos
Caenorhabditis elegans/fisiologia , Diferenciação Celular/fisiologia , Células Germinativas/fisiologia , Neurônios/fisiologia , Animais , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caspases , Estresse do Retículo Endoplasmático/fisiologia , Gônadas , Proteínas Serina-Treonina Quinases/metabolismo , Estabilidade de RNA
8.
Curr Top Dev Biol ; 144: 245-268, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33992155

RESUMO

Sex-specific behaviors are common in nature and are crucial for reproductive fitness and species survival. A key question in the field of sex/gender neurobiology is whether and to what degree the sex-shared nervous system differs between the sexes in the anatomy, connectivity and molecular identity of its components. An equally intriguing issue is how does the same sex-shared neuronal template diverge to mediate distinct behavioral outputs in females and males. This chapter aims to present the most up-to-date understanding of how this task is achieved in C. elegans. The vast majority of neurons in C. elegans are shared among the two sexes in terms of their lineage history, anatomical position and neuronal identity. Yet a substantial amount of evidence points to the hermaphrodite-male counterparts of some neurons expressing different genes and forming different synaptic connections. This, in turn, enables the same cells and circuits to transmit discrete signals in the two sexes and ultimately execute different functions. We review the various sex-shared behavioral paradigms that have been shown to be sexually dimorphic in recent years, discuss the mechanisms that underlie these examples, refer to the developmental regulation of neuronal dimorphism and suggest evolutionary concepts that emerge from the data.


Assuntos
Caenorhabditis elegans , Sistema Nervoso , Caracteres Sexuais , Animais , Caenorhabditis elegans/genética , Feminino , Aptidão Genética , Masculino , Neurobiologia , Neurônios
9.
Curr Biol ; 30(21): 4128-4141.e5, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32857970

RESUMO

Sexually dimorphic circuits underlie behavioral differences between the sexes, yet the molecular mechanisms involved in their formation are poorly understood. We show here that sexually dimorphic connectivity patterns arise in C. elegans through local ubiquitin-mediated protein degradation in selected synapses of one sex but not the other. Specifically, synaptic degradation occurs via binding of the evolutionary conserved E3 ligase SEL-10/FBW7 to a phosphodegron binding site of the netrin receptor UNC-40/DCC (Deleted in Colorectal Cancer), resulting in degradation of UNC-40. In animals carrying an undegradable unc-40 gain-of-function allele, synapses were retained in both sexes, compromising the activity of the circuit without affecting neurite guidance. Thus, by decoupling the synaptic and guidance functions of the netrin pathway, we reveal a critical role for dimorphic protein degradation in controlling neuronal connectivity and activity. Additionally, the interaction between SEL-10 and UNC-40 is necessary not only for sex-specific synapse pruning, but also for other synaptic functions. These findings provide insight into the mechanisms that generate sex-specific differences in neuronal connectivity, activity, and function.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Moléculas de Adesão Celular/metabolismo , Proteínas de Ciclo Celular/metabolismo , Caracteres Sexuais , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Alelos , Animais , Animais Geneticamente Modificados , Axônios/metabolismo , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Moléculas de Adesão Celular/genética , Mutação com Ganho de Função , Masculino , Proteólise , Ubiquitinação/genética
10.
Elife ; 92020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-32213289

RESUMO

How lifespan and the rate of aging are set is a key problem in biology. Small RNAs are conserved molecules that impact diverse biological processes through the control of gene expression. However, in contrast to miRNAs, the role of endo-siRNAs in aging remains unexplored. Here, by combining deep sequencing and genomic and genetic approaches in Caenorhabditis elegans, we reveal an unprecedented role for endo-siRNA molecules in the maintenance of proteostasis and lifespan extension in germline-less animals. Furthermore, we identify an endo-siRNA-regulated tyrosine phosphatase, which limits the longevity of germline-less animals by restricting the activity of the heat shock transcription factor HSF-1. Altogether, our findings point to endo-siRNAs as a link between germline removal and the HSF-1 proteostasis and longevity-promoting somatic pathway. This establishes a role for endo siRNAs in the aging process and identifies downstream genes and physiological processes that are regulated by the endo siRNAs to affect longevity.


Assuntos
Caenorhabditis elegans/fisiologia , Células Germinativas/fisiologia , Longevidade/fisiologia , Proteostase/fisiologia , RNA Interferente Pequeno/fisiologia , Animais , Proteínas de Caenorhabditis elegans/fisiologia , Resposta ao Choque Térmico , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/fisiologia , Fatores de Transcrição/fisiologia
11.
Elife ; 82019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30694177

RESUMO

Dendritic arbors are crucial for nervous system assembly, but the intracellular mechanisms that govern their assembly remain incompletely understood. Here, we show that the dendrites of PVD neurons in Caenorhabditis elegans are patterned by distinct pathways downstream of the DMA-1 leucine-rich transmembrane (LRR-TM) receptor. DMA-1/LRR-TM interacts through a PDZ ligand motif with the guanine nucleotide exchange factor TIAM-1/GEF in a complex with act-4/Actin to pattern higher order 4° dendrite branches by localizing F-actin to the distal ends of developing dendrites. Surprisingly, TIAM-1/GEF appears to function independently of Rac1 guanine nucleotide exchange factor activity. A partially redundant pathway, dependent on HPO-30/Claudin, regulates formation of 2° and 3° branches, possibly by regulating membrane localization and trafficking of DMA-1/LRR-TM. Collectively, our experiments suggest that HPO-30/Claudin localizes the DMA-1/LRR-TM receptor on PVD dendrites, which in turn can control dendrite patterning by directly modulating F-actin dynamics through TIAM-1/GEF.


Assuntos
Actinas/genética , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Proteínas de Membrana/genética , Plasticidade Neuronal/genética , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T/genética , Actinas/metabolismo , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Claudinas/genética , Claudinas/metabolismo , Regulação da Expressão Gênica , Proteínas de Membrana/metabolismo , Sistema Nervoso/citologia , Sistema Nervoso/crescimento & desenvolvimento , Sistema Nervoso/metabolismo , Neurogênese/genética , Neurônios/citologia , Neurônios/metabolismo , Domínios PDZ , Ligação Proteica , Transporte Proteico , Transmissão Sináptica , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T/metabolismo , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo
12.
PLoS Genet ; 13(1): e1006579, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28114319

RESUMO

Neurons receive excitatory or sensory inputs through their dendrites, which often branch extensively to form unique neuron-specific structures. How neurons regulate the formation of their particular arbor is only partially understood. In genetic screens using the multidendritic arbor of PVD somatosensory neurons in the nematode Caenorhabditis elegans, we identified a mutation in the ER stress sensor IRE-1/Ire1 (inositol requiring enzyme 1) as crucial for proper PVD dendrite arborization in vivo. We further found that regulation of dendrite growth in cultured rat hippocampal neurons depends on Ire1 function, showing an evolutionarily conserved role for IRE-1/Ire1 in dendrite patterning. PVD neurons of nematodes lacking ire-1 display reduced arbor complexity, whereas mutations in genes encoding other ER stress sensors displayed normal PVD dendrites, specifying IRE-1 as a selective ER stress sensor that is essential for PVD dendrite morphogenesis. Although structure function analyses indicated that IRE-1's nuclease activity is necessary for its role in dendrite morphogenesis, mutations in xbp-1, the best-known target of non-canonical splicing by IRE-1/Ire1, do not exhibit PVD phenotypes. We further determined that secretion and distal localization to dendrites of the DMA-1/leucine rich transmembrane receptor (DMA-1/LRR-TM) is defective in ire-1 but not xbp-1 mutants, suggesting a block in the secretory pathway. Interestingly, reducing Insulin/IGF1 signaling can bypass the secretory block and restore normal targeting of DMA-1, and consequently normal PVD arborization even in the complete absence of functional IRE-1. This bypass of ire-1 requires the DAF-16/FOXO transcription factor. In sum, our work identifies a conserved role for ire-1 in neuronal branching, which is independent of xbp-1, and suggests that arborization defects associated with neuronal pathologies may be overcome by reducing Insulin/IGF signaling and improving ER homeostasis and function.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Dendritos/metabolismo , Insulina/metabolismo , Neurogênese , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Somatomedina/metabolismo , Transdução de Sinais , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Células Cultivadas , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Serina-Treonina Quinases/genética , Ratos
13.
Genes Dev ; 30(23): 2607-2622, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28007784

RESUMO

The Runx3 transcription factor is essential for development and diversification of the dorsal root ganglia (DRGs) TrkC sensory neurons. In Runx3-deficient mice, developing TrkC neurons fail to extend central and peripheral afferents, leading to cell death and disruption of the stretch reflex circuit, resulting in severe limb ataxia. Despite its central role, the mechanisms underlying the spatiotemporal expression specificities of Runx3 in TrkC neurons were largely unknown. Here we first defined the genomic transcription unit encompassing regulatory elements (REs) that mediate the tissue-specific expression of Runx3. Using transgenic mice expressing BAC reporters spanning the Runx3 locus, we discovered three REs-dubbed R1, R2, and R3-that cross-talk with promoter-2 (P2) to drive TrkC neuron-specific Runx3 transcription. Deletion of single or multiple elements either in the BAC transgenics or by CRISPR/Cas9-mediated endogenous ablation established the REs' ability to promote and/or repress Runx3 expression in developing sensory neurons. Our analysis reveals that an intricate combinatorial interplay among the three REs governs Runx3 expression in distinct subtypes of TrkC neurons while concomitantly extinguishing its expression in non-TrkC neurons. These findings provide insights into the mechanism regulating cell type-specific expression and subtype diversification of TrkC neurons in developing DRGs.


Assuntos
Subunidade alfa 3 de Fator de Ligação ao Core/genética , Gânglios Espinais/embriologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Neurônios/metabolismo , Elementos Reguladores de Transcrição/genética , Animais , Ataxia/genética , Sítios de Ligação , Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo , Embrião de Mamíferos , Gânglios Espinais/citologia , Deleção de Genes , Locomoção/genética , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/citologia , Regiões Promotoras Genéticas/genética , Ligação Proteica , Fatores de Transcrição/metabolismo
15.
Curr Biol ; 26(17): 2379-87, 2016 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-27451901

RESUMO

Sensory dendrite arbors are patterned through cell-autonomously and non-cell-autonomously functioning factors [1-3]. Yet, only a few non-cell-autonomously acting proteins have been identified, including semaphorins [4, 5], brain-derived neurotrophic factors (BDNFs) [6], UNC-6/Netrin [7], and the conserved MNR-1/Menorin-SAX-7/L1CAM cell adhesion complex [8, 9]. This complex acts from the skin to pattern the stereotypic dendritic arbors of PVD and FLP somatosensory neurons in Caenorhabditis elegans through the leucine-rich transmembrane receptor DMA-1/LRR-TM expressed on PVD neurons [8, 9]. Here we describe a role for the diffusible C. elegans protein LECT-2, which is homologous to vertebrate leukocyte cell-derived chemotaxin 2 (LECT2)/Chondromodulin II. LECT2/Chondromodulin II has been implicated in a variety of pathological conditions [10-13], but the developmental functions of LECT2 have remained elusive. We find that LECT-2/Chondromodulin II is required for development of PVD and FLP dendritic arbors and can act as a diffusible cue from a distance to shape dendritic arbors. Expressed in body-wall muscles, LECT-2 decorates neuronal processes and hypodermal cells in a pattern similar to the cell adhesion molecule SAX-7/L1CAM. LECT-2 functions genetically downstream of the MNR-1/Menorin-SAX-7/L1CAM adhesion complex and upstream of the DMA-1 receptor. LECT-2 localization is dependent on SAX-7/L1CAM, but not on MNR-1/Menorin or DMA-1/LRR-TM, suggesting that LECT-2 functions as part of the skin-derived MNR-1/Menorin-SAX-7/L1CAM adhesion complex. Collectively, our findings suggest that LECT-2/Chondromodulin II acts as a muscle-derived, diffusible cofactor together with a skin-derived cell adhesion complex to orchestrate the molecular interactions of three tissues during patterning of somatosensory dendrites.


Assuntos
Padronização Corporal , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Fatores Quimiotáticos/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Fatores Quimiotáticos/química , Fatores Quimiotáticos/metabolismo , Sinais (Psicologia) , Dendritos/fisiologia , Larva/genética , Larva/crescimento & desenvolvimento , Larva/fisiologia , Músculos/metabolismo , Alinhamento de Sequência , Pele/metabolismo
16.
PLoS Genet ; 10(10): e1004747, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25340700

RESUMO

The C. elegans germline is pluripotent and mitotic, similar to self-renewing mammalian tissues. Apoptosis is triggered as part of the normal oogenesis program, and is increased in response to various stresses. Here, we examined the effect of endoplasmic reticulum (ER) stress on apoptosis in the C. elegans germline. We demonstrate that pharmacological or genetic induction of ER stress enhances germline apoptosis. This process is mediated by the ER stress response sensor IRE-1, but is independent of its canonical downstream target XBP-1. We further demonstrate that ire-1-dependent apoptosis in the germline requires both CEP-1/p53 and the same canonical apoptotic genes as DNA damage-induced germline apoptosis. Strikingly, we find that activation of ire-1, specifically in the ASI neurons, but not in germ cells, is sufficient to induce apoptosis in the germline. This implies that ER stress related germline apoptosis can be determined at the organism level, and is a result of active IRE-1 signaling in neurons. Altogether, our findings uncover ire-1 as a novel cell non-autonomous regulator of germ cell apoptosis, linking ER homeostasis in sensory neurons and germ cell fate.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Diferenciação Celular/genética , Neurônios/citologia , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais , Animais , Apoptose/genética , Caenorhabditis elegans , Proteínas de Transporte/genética , Dano ao DNA/genética , Estresse do Retículo Endoplasmático/genética , Células Germinativas/crescimento & desenvolvimento , Gônadas/crescimento & desenvolvimento
17.
PLoS Genet ; 10(9): e1004657, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25232734

RESUMO

Animals sample their environment through sensory neurons with often elaborately branched endings named dendritic arbors. In a genetic screen for genes involved in the development of the highly arborized somatosensory PVD neuron in C. elegans, we have identified mutations in kpc-1, which encodes the homolog of the proprotein convertase furin. We show that kpc-1/furin is necessary to promote the formation of higher order dendritic branches in PVD and to ensure self-avoidance of sister branches, but is likely not required during maintenance of dendritic arbors. A reporter for kpc-1/furin is expressed in neurons (including PVD) and kpc-1/furin can function cell-autonomously in PVD neurons to control patterning of dendritic arbors. Moreover, we show that kpc-1/furin also regulates the development of other neurons in all major neuronal classes in C. elegans, including aspects of branching and extension of neurites as well as cell positioning. Our data suggest that these developmental functions require proteolytic activity of KPC-1/furin. Recently, the skin-derived MNR-1/menorin and the neural cell adhesion molecule SAX-7/L1CAM have been shown to act as a tripartite complex with the leucine rich transmembrane receptor DMA-1 on PVD mechanosensory to orchestrate the patterning of dendritic branches. Genetic analyses show that kpc-1/furin functions in a pathway with MNR-1/menorin, SAX-7/L1CAM and DMA-1 to control dendritic branch formation and extension of PVD neurons. We propose that KPC-1/furin acts in concert with the 'menorin' pathway to control branching and growth of somatosensory dendrites in PVD.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Dendritos/metabolismo , Furina/genética , Células Receptoras Sensoriais/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Furina/química , Furina/metabolismo , Dados de Sequência Molecular , Mutação , Fenótipo , Alinhamento de Sequência
18.
Cell ; 155(2): 308-20, 2013 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-24120132

RESUMO

Sensory dendrites depend on cues from their environment to pattern their growth and direct them toward their correct target tissues. Yet, little is known about dendrite-substrate interactions during dendrite morphogenesis. Here, we describe MNR-1/menorin, which is part of the conserved Fam151 family of proteins and is expressed in the skin to control the elaboration of "menorah"-like dendrites of mechanosensory neurons in Caenorhabditis elegans. We provide biochemical and genetic evidence that MNR-1 acts as a contact-dependent or short-range cue in concert with the neural cell adhesion molecule SAX-7/L1CAM in the skin and through the neuronal leucine-rich repeat transmembrane receptor DMA-1 on sensory dendrites. Our data describe an unknown pathway that provides spatial information from the skin substrate to pattern sensory dendrite development nonautonomously.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Dendritos/metabolismo , Proteínas de Membrana/metabolismo , Neurônios/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Caenorhabditis elegans/genética , Clonagem Molecular , Técnicas de Silenciamento de Genes , Proteínas de Membrana/genética , Dados de Sequência Molecular , Alinhamento de Sequência
19.
Dev Biol ; 338(2): 158-67, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-20004656

RESUMO

Meig1 is a mouse gene, abundantly expressed in the testis. It encodes two alternative transcripts that are expressed differentially in the somatic and germinal compartments of the testis. These transcripts share the same coding region but differ in their 5' un-translated regions, due to alternative promoters. Here we show that MEIG1 is a highly conserved short metazoan protein with a conserved core of 81 residues. It is present from chordates to radial symmetry animals, with an intriguing absence in insects and nematodes. It is also present in two earlier diverging protist lineages. To elucidate the role of MEIG1 during gamete production we established a knockout mouse line by eliminating the common coding region. Our results identified Meig1 as a critical spermatogenic gene, whose absence results in complete male infertility. Seminiferous tubules in Meig1-null males contained all early stages of spermatogenesis, up to elongating spermatids, but mature elongated spermatids were absent. Accordingly, the caudal epididymis was apparently missing spermatozoa, and the very few spermatozoa-like cells that were obtained were immotile and exhibited a wide range of severe morphological abnormalities. These results point at late spermiogenesis as the differentiative stage at which MEIG1's function is crucial. Nevertheless, delayed kinetics of earlier meiotic stages together with increased apoptosis of meiotic spermatocytes and haploid round spermadids in Meig1 knockout males, suggest involvement of MEIG1 in meiotic stages as well.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Proteínas Nucleares/deficiência , Proteínas Nucleares/fisiologia , Fosfoproteínas/deficiência , Fosfoproteínas/fisiologia , Espermatogênese , Animais , Sequência Conservada , Infertilidade/genética , Masculino , Meiose , Camundongos , Camundongos Knockout , Filogenia , Túbulos Seminíferos , Espermátides , Espermatócitos
20.
J Biol Chem ; 277(38): 35274-81, 2002 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-12077121

RESUMO

The OS-9 gene maps to a region (q13-15) of chromosome 12 that is highly amplified in human osteosarcomas and encodes a protein of unknown function. Here we have characterized a homolog designated as YOS9 (YDR057w) from Saccharomyces cerevisiae. The yeast protein (Yos9) is a membrane-associated glycoprotein that localizes to the endoplasmic reticulum (ER). YOS9 interacts genetically with genes involved in ER-Golgi transport, particularly SEC34, whose temperature-sensitive mutant is rescued by YOS9 overexpression. Interestingly, Yos9 appears to play a direct role in the transport of glycosylphosphatidylinositol (GPI)-anchored proteins to the Golgi apparatus. Yos9 binds directly to Gas1 and Mkc7 and accelerates Gas1 transport and processing in cells overexpressing YOS9. Correspondingly, Gas1 processing is slowed in cells bearing a deletion in YOS9. No effect upon the transport and processing of non-GPI-anchored proteins (e.g. invertase and carboxypeptidase Y) was detected in cells either lacking or overexpressing Yos9. As Yos9 is not a component of the Emp24 complex, it may act as a novel escort factor for GPI-anchored proteins in ER-Golgi transport in yeast and possibly in mammals.


Assuntos
Retículo Endoplasmático/metabolismo , Amplificação de Genes , Genes Fúngicos , Glicosilfosfatidilinositóis/metabolismo , Complexo de Golgi/metabolismo , Osteossarcoma/genética , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Sequência de Bases , Sequência Conservada , Primers do DNA , Evolução Molecular , Imunofluorescência , Dados de Sequência Molecular , Testes de Precipitina , Desnaturação Proteica , Transporte Proteico , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA