Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 10418, 2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710793

RESUMO

A new drug delivery system using an asymmetric polyethersulfone (PES) membrane modified by SBA-15 and glutamine-modified SBA-15 (SBA-Q) was prepared in this study by the aim of azithromycin delivery enhancement in both in vitro and ex vivo experiments. The research focused on optimizing membrane performance by adjusting critical parameters including drug concentration, membrane thickness, modifier percentage, polymer percentage, and pore maker percentage. To characterize the fabricated membranes, various techniques were employed, including scanning electron microscopy, water contact angle, and tensile strength assessments. Following optimization, membrane composition of 17% PES, 2% polyvinylpyrrolidone, 1% SBA-15, and 0.5% SBA-Q emerged as the most effective. The optimized membranes demonstrated a substantial increase in drug release (906 mg/L) compared to the unmodified membrane (440 mg/L). The unique membrane structure, with a dense top layer facilitating sustained drug release and a porous sub-layer acting as a drug reservoir, contributed to this improvement. Biocompatibility assessments, antibacterial activity analysis, blood compatibility tests, and post-diffusion tissue integrity evaluations confirmed the promising biocompatibility of the optimized membranes. Moreover, long-term performance evaluations involving ten repeated usages underscored the reusability of the optimized membrane, highlighting its potential for sustained and reliable drug delivery applications.


Assuntos
Antibacterianos , Sistemas de Liberação de Medicamentos , Membranas Artificiais , Polímeros , Dióxido de Silício , Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Antibacterianos/química , Dióxido de Silício/química , Polímeros/química , Porosidade , Sulfonas/química , Sulfonas/administração & dosagem , Liberação Controlada de Fármacos , Animais , Azitromicina/administração & dosagem , Azitromicina/farmacocinética , Azitromicina/química , Azitromicina/farmacologia , Humanos
2.
Sci Rep ; 14(1): 6398, 2024 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493249

RESUMO

This study investigates the probiotic and anti-cancer effects of 21 isolated Lactobacillus strains from cheese, milk, and yogurt in Kermanshah, Iran, on oral cancer cell lines KB and OSCC. Four selected isolates (Y33, M45, C5, and C28) displayed good viability and resistance to specific antibiotics. Notably, strains C28 and Y33 exhibited the best results, showing susceptibility or semi-susceptibility to five antibiotics. Y33, with high cell surface hydrophobicity (62%), demonstrated significant anti-pathogenic activity, inhibiting the growth of tested pathogens and displaying strong adhesion to human intestinal Caco-2 cells (52%). Further assessments, including acridine orange/ethidium bromide staining and mRNA expression analysis, revealed four isolates (C5, C28, M45, and Y33) with promising probiotic properties. Particularly, Y33's protein-based extract metabolites showed dose- and time-dependent inhibition of KB and OSCC cancer cell lines, inducing apoptosis without significant cytotoxic effects on normal cells. Y33 (Lactiplantibacillus plantarum) exhibited the strongest probiotic potential, surpassing conventional anti-cancer drugs, suggesting its therapeutic potential for preventing oral cancer cell proliferation and improving survival rates in oral cancer patients.


Assuntos
Queijo , Neoplasias Bucais , Probióticos , Humanos , Animais , Lactobacillus , Leite , Células CACO-2 , Iogurte , Probióticos/farmacologia , Antibacterianos/farmacologia
3.
J Reprod Immunol ; 156: 103828, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36796148

RESUMO

The microbiome in the female reproductive tract plays an essential role in immune modulation and reproductive health. However, various microbes become established during pregnancy, the balance of which plays a crucial role in embryonic development and healthy births. The contribution of disturbances in the microbiome profile to embryo health is poorly understood. A better understanding of the relationship between reproductive outcomes and the vaginal microbiota is needed to optimize the chances of healthy births. In this regards, microbiome dysbiosis refers to conditions in which the pathways of communication and balance within the normal microbiome are imbalanced due to the intrusion of pathogenic microorganisms into the reproductive system. This review summarizes the current state of knowledge on the natural human microbiome, with a focus on the natural uterine microbiome, mother-to-child transmission, dysbiosis, and the pattern of microbial change in pregnancy and parturition, and reviews the effects of artificial uterus probiotics during pregnancy. These effects can be studied in the sterile environment of an artificial uterus, and microbes with potential probiotic activity can be studied as a possible therapeutic approach. The artificial uterus is a technological device or biobag used as an incubator, allowing extracorporeal pregnancy. Establishing beneficial microbial communities within the artificial womb using probiotic species could modulate the immune system of both the fetus and the mother. The artificial womb could be used to select the best strains of probiotic species to fight infection with specific pathogens. Questions about the interactions and stability of the most appropriate probiotics, as well as dosage and duration of treatment, need to be answered before probiotics can be a clinical treatment in human pregnancy.


Assuntos
Disbiose , Microbiota , Gravidez , Feminino , Humanos , Transmissão Vertical de Doenças Infecciosas , Útero , Vagina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA