RESUMO
Previous work has shown that the TbFUT1 and LmjFUT1 genes encode essential fucosyltransferases located inside the single mitochondria of the protozoan parasites Trypanosoma brucei and Leishmania major, respectively. However, nothing was known about the orthologous gene TcFUT1 or its gene product in Trypanosoma cruzi, aetiological agent of Chagas disease. In this study, we describe the overexpression of TcFUT1 with a C-terminal 6xMyc epitope tag in T. cruzi epimastigote cells. Overexpressed and immunoprecipitated TcFUT1-6xMyc was used to demonstrate enzymatic activity and to explore substrate specificity. This defined TcFUT1 as a GDP-Fuc : ßGal α1-2 fucosyltransferase with a strict requirement for acceptor glycans with non-reducing terminal Galß1-3GlcNAc structures. This differs from the specificity of the T. brucei orthologue TbFUT1, which can also tolerate non-reducing terminal Galß1-4GlcNAc and Galß1-4Glc acceptor sites. Immunofluorescence microscopy using α-Myc tag antibodies also showed a mitochondrial location for TcFUT1 in T. cruzi epimastigote cells. Collectively, these results are like those described for TbFUT1 and LmjFUT1 from T. brucei and L. major, suggesting that FUT1 gene products have conserved function for across the trypanosomatids and may share therapeutic target potential.
Assuntos
Doença de Chagas , Leishmania major , Trypanosoma cruzi , Humanos , Trypanosoma cruzi/genética , Fucosiltransferases/genética , Leishmania major/genética , MitocôndriasRESUMO
The biosynthesis of glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) in the parasitic protozoan Trypanosoma brucei involves fatty acid remodeling of the GPI precursor molecules before they are transferred to protein in the endoplasmic reticulum. The genes encoding the requisite phospholipase A2 and A1 activities for this remodeling have thus far been elusive. Here, we identify a gene, Tb927.7.6110, that encodes a protein that is both necessary and sufficient for GPI-phospholipase A2 (GPI-PLA2) activity in the procyclic form of the parasite. The predicted protein product belongs to the alkaline ceramidase, PAQR receptor, Per1, SID-1, and TMEM8 (CREST) superfamily of transmembrane hydrolase proteins and shows sequence similarity to Post-GPI-Attachment to Protein 6 (PGAP6), a GPI-PLA2 that acts after transfer of GPI precursors to protein in mammalian cells. We show the trypanosome Tb927.7.6110 GPI-PLA2 gene resides in a locus with two closely related genes Tb927.7.6150 and Tb927.7.6170, one of which (Tb927.7.6150) most likely encodes a catalytically inactive protein. The absence of GPI-PLA2 in the null mutant procyclic cells not only affected fatty acid remodeling but also reduced GPI anchor sidechain size on mature GPI-anchored procyclin glycoproteins. This reduction in GPI anchor sidechain size was reversed upon the re-addition of Tb927.7.6110 and of Tb927.7.6170, despite the latter not encoding GPI precursor GPI-PLA2 activity. Taken together, we conclude that Tb927.7.6110 encodes the GPI-PLA2 of GPI precursor fatty acid remodeling and that more work is required to assess the roles and essentiality of Tb927.7.6170 and the presumably enzymatically inactive Tb927.7.6150.
Assuntos
Glicosilfosfatidilinositóis , Trypanosoma brucei brucei , Animais , Glicosilfosfatidilinositóis/genética , Glicosilfosfatidilinositóis/metabolismo , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Proteínas de Membrana/metabolismo , Fosfolipases A2/metabolismo , Proteínas Ligadas por GPI/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Mamíferos/metabolismoRESUMO
In Trypanosoma brucei, there are fourteen enzymatic biotransformations that collectively convert glucose into five essential nucleotide sugars: UDP-Glc, UDP-Gal, UDP-GlcNAc, GDP-Man and GDP-Fuc. These biotransformations are catalyzed by thirteen discrete enzymes, five of which possess putative peroxisome targeting sequences. Published experimental analyses using immunofluorescence microscopy and/or digitonin latency and/or subcellular fractionation and/or organelle proteomics have localized eight and six of these enzymes to the glycosomes of bloodstream form and procyclic form T. brucei, respectively. Here we increase these glycosome localizations to eleven in both lifecycle stages while noting that one, phospho-N-acetylglucosamine mutase, also localizes to the cytoplasm. In the course of these studies, the heterogeneity of glycosome contents was also noted. These data suggest that, unlike other eukaryotes, all of nucleotide sugar biosynthesis in T. brucei is compartmentalized to the glycosomes in both lifecycle stages. The implications are discussed.