Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Br J Cancer ; 128(10): 1941-1954, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36959380

RESUMO

BACKGROUND: Systemic therapy for metastatic clear cell sarcoma (CCS) bearing EWSR1-CREB1/ATF1 fusions remains an unmet clinical need in children, adolescents, and young adults. METHODS: To identify key signaling pathway vulnerabilities in CCS, a multi-pronged approach was taken: (i) genomic and transcriptomic landscape analysis, (ii) integrated chemical biology interrogations, (iii) development of CREB1/ATF1 inhibitors, and (iv) antibody-drug conjugate testing (ADC). The first approach encompassed DNA exome and RNA deep sequencing of the largest human CCS cohort yet reported consisting of 47 patient tumor samples and 8 cell lines. RESULTS: Sequencing revealed recurrent mutations in cell cycle checkpoint, DNA double-strand break repair or DNA mismatch repair genes, with a correspondingly low to intermediate tumor mutational burden. DNA multi-copy gains with corresponding high RNA expression were observed in CCS tumor subsets. CCS cell lines responded to the HER3 ADC patritumab deruxtecan in a dose-dependent manner in vitro, with impaired long term cell viability. CONCLUSION: These studies of the genomic, transcriptomic and chemical biology landscape represent a resource 'atlas' for the field of CCS investigation and drug development. CHK inhibitors are identified as having potential relevance, CREB1 inhibitors non-dependence of CCS on CREB1 activity was established, and the potential utility of HER3 ADC being used in CCS is found.


Assuntos
Sarcoma de Células Claras , Criança , Adolescente , Adulto Jovem , Humanos , Sarcoma de Células Claras/genética , Sarcoma de Células Claras/metabolismo , Sarcoma de Células Claras/patologia , Transcriptoma , Genômica , Sequência de Bases , RNA , Proteínas de Fusão Oncogênica/genética
2.
J Phys Chem B ; 120(9): 2095-105, 2016 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-26865374

RESUMO

Monte Carlo (MC) simulations of conformational changes and protonation of Glu-242, a key residue that shuttles protons in cytochrome c oxidase (CcO), are reported. Previous studies suggest that this residue may play a role of the valve of the enzyme proton pump. Here we examine how sensitive the results of simulations are to the computational method used. We applied both molecular mechanic (MM) and hybrid quantum mechanic:molecular mechanic (QM:MM) methods and find that the results are qualitatively different. The results indicate that the mechanism for proton gating in CcO is still an open issue.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/química , Ácido Glutâmico/química , Ligação de Hidrogênio , Modelos Moleculares , Método de Monte Carlo , Teoria Quântica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA