Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 17(7)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39065722

RESUMO

Mefloquine (MQ) is an antimalarial medication prescribed to treat or malaria prevention.. When taken by children, vomiting usually occurs, and new doses of medication frequently need to be taken. So, developing pediatric medicines using taste-masked antimalarial drug complexes is mandatory for the success of mefloquine administration. The hypothesis that binding mefloquine to an ion-exchange resin (R) could circumvent the drug's bitter taste problem was proposed, and solid-state 13C cross-polarization magic angle spinning (CPMAS) NMR was able to follow MQ-R mixtures through chemical shift and relaxation measurements. The nature of MQ-R complex formation could then be determined. Impedimetric electronic tongue equipment also verified the resinate taste-masking efficiency in vitro. Variations in chemical shifts and structure dynamics measured by proton relaxation properties (e.g., T1ρH) were used as probes to follow the extension of mixing and specific interactions that would be present in MQ-R. A significant decrease in T1ρH values was observed for MQ carbons in MQ-R complexes, compared to the ones in MQ (from 100-200 ms in MQ to 20-50 ms in an MQ-R complex). The results evidenced that the cationic resin interacts strongly with mefloquine molecules in the formulation of a 1:1 ratio complex. Thus, 13C CPMAS NMR allowed the confirmation of the presence of a binding between mefloquine and polacrilin in the MQ-R formulation studied.

2.
ACS Omega ; 5(45): 29520-29529, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33225183

RESUMO

Chitosan, a heteropolysaccharide obtained from the N-deacetylation of chitin, has stood out as a raw material to produce CO2 adsorbents. In this work, we report the hydrothermal carbonization (HTC) of chitosan for different times and the potential of the materials for CO2 adsorption. Elemental analysis indicated that the carbon weight content increases, whereas the relative amount of oxygen atoms decreases upon increasing the time of HTC. The relative nitrogen content was almost constant, indicating that HTC did not lead to significant loss of nitrogenated compounds. FTIR and 13C MAS/NMR spectra suggest that the structure of the sorbents becomes more aromatic with the increase of HTC time. The thermal properties of HTC materials were similar to that of chitosan, whereas their basicity was less compared to that of the parent chitosan. SEM images did not show significant porosity, which was confirmed by the BET area of the materials, around 2 m2·g-1, similar to that of the parent chitosan. The materials were tested for CO2 capture at 25 °C and 1 bar; the HTC chitosan adsorbents showed CO2 uptakes about 4-fold higher than that of the parent chitosan. The adsorption process was better described by the Freundlich isotherm and the pseudo-second-order kinetic model.

3.
Front Chem ; 7: 720, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31737600

RESUMO

Fluidized catalytic cracking (FCC) converts hydrocarbons in the presence of a catalyst based on faujasite zeolite (USY and REY). While hydrocarbon is poorly reactive, biomass and its derived compounds are highly functionalized and not suitable to a typical FCC process. To overcome this limitation biomass was first converted into a dense and stable bio-crude composed mainly of ketal-sugar derivatives by using acetone in diluted acid. Here, a representative compound of this bio-crude, 1,2:3,5-di-O-isopropylidene-α-D-xylofuranose (DX) in n-hexane, was converted by USY and a commercial FCC catalyst containing USY, at 500°C, in a fixed bed and fluidized bed reactors, respectively. Faujasite Y is very efficient in converting DX. More than 95% conversion was observed in all tests. Over 60 wt.% was liquid products, followed by gas products and only around 10% or less in coke. The higher the catalyst activity the greater the aromatics in the liquid products and yet higher coke yields were observed. In particular, simulating more practical application conditions: using deactivated catalyst in a fluidized bed reactor, improved green hydrocarbons production (mono-aromatic up to 10 carbons and light hydrocarbon up to eight carbons) and unprecedented lower coke yield (≈5 wt.%) for bio-feeds. The present results further suggest that catalyst will play a primary role to convert the bio-crude into target hydrocarbons and overcome the transition of a non-renewable to a renewable refinery feed.

4.
J Pharm Anal ; 8(2): 103-108, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29736296

RESUMO

Meloxicam (MLX) is an anti-inflammatory drug susceptible to variations and crystalline transitions. In compounding pharmacies, the complete crystallographic evaluation of the raw material is not a routine procedure. We performed a complete crystallographic characterization of aleatory raw MLX samples from compounding pharmacies. X-ray diffraction indicated the presence of two crystalline forms in one sample. DSC experiments suggested that crystallization, or a crystal transition, occurred differently between samples. The FTIR and 1H NMR spectra showed characteristic assignments. 13C solid-state NMR spectroscopy indicated the presence of more than one phase in a sample from pharmacy B. The Hirshfeld surface analysis, with electrostatic potential projection, allowed complete assignment of the UV spectra in ethanol solution. The polymorph I of meloxicam was more active than polymorph III in an experimental model of acute inflammation in mice. Our results highlighted the need for complete crystallographic characterization and the separation of freely used raw materials in compounding pharmacies, as a routine procedure, to ensure the desired dose/effect.

5.
J Pharm Sci ; 105(9): 2648-2655, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26372719

RESUMO

The experiments of carvedilol form II, form III, and hydrate by (13)C and (15)N cross-polarization magic-angle spinning (CP MAS) are reported. The GIPAW (gauge-including projector-augmented wave) method from DFT (density functional theory) calculations was used to simulate (13)C and (15)N chemical shifts. A very good agreement was found for the comparison between the global results of experimental and calculated nuclear magnetic resonance (NMR) chemical shifts for carvedilol polymorphs. This work aims a comprehensive understanding of carvedilol crystalline forms employing solution and solid-state NMR as well as DFT calculations.


Assuntos
Carbazóis/química , Espectroscopia de Ressonância Magnética/métodos , Modelos Químicos , Propanolaminas/química , Isótopos de Carbono/química , Carvedilol , Cristalização , Cristalografia por Raios X , Estrutura Molecular , Isótopos de Nitrogênio/química
6.
Cell Tissue Res ; 357(3): 793-801, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24859219

RESUMO

We evaluate the effects of strontium ranelate on the composition and crystal structure of the biological bone-like apatite produced in osteoblast cell cultures, a system that gave us the advantage of obtaining mineral samples produced exclusively during treatment. Cells were treated with strontium ranelate at concentrations of 0.05 and 0.5 mM Sr(2+). Mineral substances were isolated and analyzed by using a combination of methods: Fourier transform infrared spectroscopy, solid-state (1)H nuclear magnetic resonance, X-ray diffraction, micro-Raman spectroscopy and energy dispersive X-ray spectroscopy. The minerals produced in all cell cultures were typical bone-like apatites. No changes occurred in the local structural order or crystal size of the minerals. However, we noticed several relevant changes in the mineral produced under 0.5 mM Sr(2+): (1) increase in type-B CO3 (2-) substitutions, which often lead to the creation of vacancies in Ca(2+) and OH(-) sites; (2) incorporation of Sr(2+) by substituting slightly less than 10 % of Ca(2+) in the apatite crystal lattice, resulting in an increase in both lattice parameters a and c; (3) change in the PO4 (3-) environments, possibly because of the expansion of the lattice; (4) the Ca/P ratio of this mineral was reduced, but its (Ca+Sr)/P ratio was the same as that of the control, indicating that its overall cation/P ratio was preserved. Thus, strontium ranelate changes the composition and crystal structure of the biological bone-like apatite produced in osteoblast cell cultures.


Assuntos
Apatitas/química , Osso e Ossos/química , Osteoblastos/citologia , Tiofenos/farmacologia , Animais , Carbonatos/análise , Cátions , Células Cultivadas , Cristalização , Camundongos , Osteoblastos/efeitos dos fármacos , Fosfatos/análise , Espectroscopia de Prótons por Ressonância Magnética , Espectrometria por Raios X , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Difração de Raios X
7.
Dalton Trans ; 42(6): 2084-93, 2013 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-23188191

RESUMO

Terephthalate-intercalated nickel-aluminum layered double hydroxides (LDHs) were prepared by a co-precipitation method, with nominal x values in the general formula Ni((1-x))Al(x)(OH)(2)(C(8)H(4)O(4))(x/2) in the range 0.3-0.8. The materials were characterized by X-ray diffraction, X-ray fluorescence spectroscopy, CHN analysis, thermogravimetric analysis, FTIR spectroscopy, EXAFS at the Ni edge and (27)Al NMR spectroscopy. A combination of XRD, XRF and CHN analysis indicated that crystalline LDHs with true x values up to 0.5 were obtained, along with increasing segregation of an aluminum hydroxide phase with increasing aluminum content. The EXAFS analysis indicated an upper limit of ca. 0.6 for the atomic fraction of aluminum at the second nickel coordination sphere. The (27)Al NMR analysis suggested that a phase containing octahedrally co-ordinated Al(3+) is segregated for nominal x values from 0.6 upwards.

8.
J Am Chem Soc ; 131(14): 5145-52, 2009 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-19317471

RESUMO

A systematic study on cationic and anionic substitution in hydroxyapatite structures was carried out, with the aim of understanding the impact of ion exchange on the crystalline structure and properties of these materials. Lead and vanadium were chosen for the exchange, due to their known effects on the redox and catalytic properties of hydroxypatites. Hydroxyapatites with variable Pb and V contents, Pb(x)Ca(10-x)(VO(4))(y)(PO(4))(6-y)(OH)(2) (x = 0, 2, 4, 6, 8 and 10 for y = 1; y = 0, 0.5, 1, 2, 3 and 6 for x = 10) were synthesized and characterized by NMR spectroscopy. Solid-state NMR allowed an analysis of the chemical environment of every ion after substitution into the hydroxyapatite network. (43)Ca and (207)Pb NMR spectra at different lead concentrations provided clear evidence of the preferential substitution of lead into the Ca(II) site, the replacement of the Ca(I) site starting at x = 4 for y = 1. Two NMR distinguishable Pb(I) sites were observed in Pb(10)(PO(4))(6)(OH)(2), which is compatible with the absence of a local mirror plane perpendicular to the c direction. In contrast with (31)P NMR, for which only small variations related to the incorporation of Pb are observed, the strong change in the (51)V NMR spectrum indicates that lead perturbs the vanadium environment more than the phosphorus one. The existence of a wide variety of environments for OH in substituted apatites is revealed by (1)H NMR, and the mobility of the water molecules appears to vary upon introduction of lead into the structure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA