Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
bioRxiv ; 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39229150

RESUMO

Breast cancer cells exhibit organotropism during metastasis, showing preferential homing to certain organs such as bone, lung, liver, and brain. One potential explanation for this organotropic behavior is that cancer cells gain properties that enable thriving in certain microenvironments. Such specific metastatic traits may arise from gene regulation at the primary tumor site. Spatial genome organization plays a crucial role in oncogenic transformation and progression, but the extent to which chromosome architecture contributes to organ-specific metastatic traits is unclear. This work characterizes chromosome architecture changes associated with organotropic metastatic traits. By comparing a collection of genomic data from different subtypes of localized and lung metastatic breast cancer cells with both normal and cancerous lung cells, we find important trends of genomic reorganization. The most striking differences in 3D genome compartments segregate cell types according to their epithelial vs. mesenchymal status. This EMT compartment signature occurs at genomic regions distinct from transcription-defined EMT signatures, suggesting a separate layer of regulation. Specifically querying organotropism, we find 3D genome changes consistent with adaptations needed to survive in a new microenvironment, with lung metastatic breast cells exhibiting compartment switch signatures that shift the genome architecture to a lung cell-like conformation and brain metastatic prostate cancer cells showing compartment shifts toward a brain-like state. TCGA patient data reveals gene expression changes concordant with these organ-permissive compartment changes. These results suggest that genome architecture provides an additional level of cell fate specification informing organotropism and enabling survival at the metastatic site.

2.
Nucleus ; 14(1): 2197693, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37017584

RESUMO

Chromatin regions that interact with the nuclear lamina are often heterochromatic, repressed in gene expression, and in the spatial B compartment. However, exceptions to this trend allow us to examine the relative impact of lamin association and spatial compartment on gene regulation. Here, we compared lamin association, gene expression, Hi-C, and histone mark datasets from cell lines representing different states of differentiation across different cell-type lineages. With these data, we compare, for example, gene expression differences when a B compartment region is associated with the nuclear lamina in one cell type but not in another. In general, we observed an additive rather than redundant effect of lamin association and compartment status. But, whether compartment status or lamin association had a dominant influence on gene expression varied by cell type. Finally, we identified how compartment and lamin association influence the likelihood of gene induction or repression in response to physicochemical treatment.


Assuntos
Lamina Tipo A , Lâmina Nuclear , Lâmina Nuclear/metabolismo , Lamina Tipo A/metabolismo , Cromatina/metabolismo , Regulação da Expressão Gênica , Cromossomos/metabolismo , Lamina Tipo B/metabolismo
3.
Trends Biochem Sci ; 48(4): 311-314, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36754683

RESUMO

Recruitment of STEM faculty is biased against parents and caregivers. Specifically, women experience discrimination associated with childrearing and marriage. Underestimating the value of these candidates leads to a tremendous loss of talent. Here, we present a toolkit to facilitate the recruitment of talented women caregivers by providing guidelines for hiring.


Assuntos
Diversidade, Equidade, Inclusão , Docentes , Seleção de Pessoal , Feminino , Humanos
4.
Elife ; 112022 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-36579892

RESUMO

The expression of a mutant Lamin A, progerin, in Hutchinson-Gilford Progeria Syndrome leads to alterations in genome architecture, nuclear morphology, epigenetic states, and altered phenotypes in all cells of the mesenchymal lineage. Here, we report a comprehensive analysis of the transcriptional status of patient derived HGPS fibroblasts, including nine cell lines not previously reported, in comparison with age-matched controls, adults, and old adults. We find that Progeria fibroblasts carry abnormal transcriptional signatures, centering around several functional hubs: DNA maintenance and epigenetics, bone development and homeostasis, blood vessel maturation and development, fat deposition and lipid management, and processes related to muscle growth. Stratification of patients by age revealed misregulated expression of genes related to endochondral ossification and chondrogenic commitment in children aged 4-7 years old, where this differentiation program starts in earnest. Hi-C measurements on patient fibroblasts show weakening of genome compartmentalization strength but increases in TAD strength. While the majority of gene misregulation occurs in regions which do not change spatial chromosome organization, some expression changes in key mesenchymal lineage genes coincide with lamin associated domain misregulation and shifts in genome compartmentalization.


Assuntos
Progéria , Humanos , Progéria/genética , Osteogênese/genética , Diferenciação Celular , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Fibroblastos/metabolismo
5.
Mol Cell ; 82(12): 2350-2350.e1, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35714589

RESUMO

Chromosomes in higher eukaryotes are folded at different length scales into loop extrusion domains, spatial compartments, and chromosome territories and exhibit interactions with nuclear structures such as the lamina. Microscopic methods can probe this structure by measuring positions of chromosomes in the nuclear space in individual cells, while sequencing-based contact capture approaches can report the frequency of contacts of different regions within these structural layers. To view this SnapShot, open or download the PDF.


Assuntos
Cromatina , Cromossomos , Núcleo Celular/genética , Núcleo Celular/ultraestrutura , Cromossomos/genética , Eucariotos/genética
6.
J Cell Biol ; 221(2)2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-34889941

RESUMO

Prostate cancer aggressiveness and metastatic potential are influenced by gene expression and genomic aberrations, features that can be influenced by the 3D structure of chromosomes inside the nucleus. Using chromosome conformation capture (Hi-C), we conducted a systematic genome architecture comparison on a cohort of cell lines that model prostate cancer progression, from normal epithelium to bone metastasis. We describe spatial compartment identity (A-open versus B-closed) changes with progression in these cell lines and their relation to gene expression changes in both cell lines and patient samples. In particular, 48 gene clusters switch from the B to the A compartment, including androgen receptor, WNT5A, and CDK14. These switches are accompanied by changes in the structure, size, and boundaries of topologically associating domains (TADs). Further, compartment changes in chromosome 21 are exacerbated with progression and may explain, in part, the genesis of the TMPRSS2-ERG translocation. These results suggest that discrete 3D genome structure changes play a deleterious role in prostate cancer progression. .


Assuntos
Cromossomos Humanos/metabolismo , Progressão da Doença , Modelos Biológicos , Neoplasias da Próstata/patologia , Linhagem Celular Tumoral , Cromatina/metabolismo , Estudos de Coortes , Genes Neoplásicos , Genoma Humano , Humanos , Masculino , Metástase Neoplásica , Neoplasias da Próstata/genética , Serina Endopeptidases/metabolismo , Ativação Transcricional/genética
7.
Trends Cancer ; 7(10): 879-882, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34462237

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic has had a detrimental effect on research. However, little has been done to identify and solve the unique challenges faced by early career investigators (ECIs). As a group of American Cancer Society-funded ECIs, we provide recommendations for solving these challenges in the aftermath of the pandemic.


Assuntos
COVID-19 , Mobilidade Ocupacional , Pesquisadores , Equilíbrio Trabalho-Vida , Humanos , Tutoria , Pesquisadores/economia , Sociedades Científicas
8.
Nat Commun ; 11(1): 6178, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33268790

RESUMO

The three-dimensional structure of chromosomes plays an important role in gene expression regulation and also influences the repair of radiation-induced DNA damage. Genomic aberrations that disrupt chromosome spatial domains can lead to diseases including cancer, but how the 3D genome structure responds to DNA damage is poorly understood. Here, we investigate the impact of DNA damage response and repair on 3D genome folding using Hi-C experiments on wild type cells and ataxia telangiectasia mutated (ATM) patient cells. We irradiate fibroblasts, lymphoblasts, and ATM-deficient fibroblasts with 5 Gy X-rays and perform Hi-C at 30 minutes, 24 hours, or 5 days after irradiation. We observe that 3D genome changes after irradiation are cell type-specific, with lymphoblastoid cells generally showing more contact changes than irradiated fibroblasts. However, all tested repair-proficient cell types exhibit an increased segregation of topologically associating domains (TADs). This TAD boundary strengthening after irradiation is not observed in ATM deficient fibroblasts and may indicate the presence of a mechanism to protect 3D genome structure integrity during DNA damage repair.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/genética , Ciclo Celular/efeitos da radiação , Reparo do DNA , DNA/genética , Genoma Humano/efeitos da radiação , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/metabolismo , Ataxia Telangiectasia/patologia , Proteínas Mutadas de Ataxia Telangiectasia/deficiência , Ciclo Celular/genética , Linhagem Celular , DNA/metabolismo , Dano ao DNA , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibroblastos/efeitos da radiação , Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Histonas/genética , Histonas/metabolismo , Humanos , Linfócitos/metabolismo , Linfócitos/patologia , Linfócitos/efeitos da radiação , Especificidade de Órgãos , Raios X
9.
Oncogene ; 39(15): 3089-3101, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31308490

RESUMO

An improved understanding of the biochemical alterations that accompany tumor progression and metastasis is necessary to inform the next generation of diagnostic tools and targeted therapies. Metabolic reprogramming is known to occur during the epithelial-mesenchymal transition (EMT), a process that promotes metastasis. Here, we identify metabolic enzymes involved in extracellular matrix remodeling that are upregulated during EMT and are highly expressed in patients with aggressive mesenchymal-like breast cancer. Activation of EMT significantly increases production of hyaluronic acid, which is enabled by the reprogramming of glucose metabolism. Using genetic and pharmacological approaches, we show that depletion of the hyaluronic acid precursor UDP-glucuronic acid is sufficient to inhibit several mesenchymal-like properties including cellular invasion and colony formation in vitro, as well as tumor growth and metastasis in vivo. We found that depletion of UDP-glucuronic acid altered the expression of PPAR-gamma target genes and increased PPAR-gamma DNA-binding activity. Taken together, our findings indicate that the disruption of EMT-induced metabolic reprogramming affects hyaluronic acid production, as well as associated extracellular matrix remodeling and represents pharmacologically actionable target for the inhibition of aggressive mesenchymal-like breast cancer progression.


Assuntos
Neoplasias da Mama/patologia , Ácido Hialurônico/biossíntese , Uridina Difosfato Glucose Desidrogenase/metabolismo , Animais , Mama/patologia , Linhagem Celular Tumoral , Embrião de Galinha , Membrana Corioalantoide , Progressão da Doença , Transição Epitelial-Mesenquimal , Matriz Extracelular/patologia , Feminino , Técnicas de Silenciamento de Genes , Humanos , PPAR gama/metabolismo , RNA-Seq , Análise Serial de Tecidos , Uridina Difosfato Glucose Desidrogenase/genética , Uridina Difosfato Ácido Glucurônico/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Cancer Res ; 77(21): 5977-5988, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28916657

RESUMO

Deposition of the extracellular matrix protein tenascin-C is part of the reactive stroma response, which has a critical role in prostate cancer progression. Here, we report that tenascin C is expressed in the bone endosteum and is associated with formation of prostate bone metastases. Metastatic cells cultured on osteo-mimetic surfaces coated with tenascin C exhibited enhanced adhesion and colony formation as mediated by integrin α9ß1. In addition, metastatic cells preferentially migrated and colonized tenascin-C-coated trabecular bone xenografts in a novel system that employed chorioallantoic membranes of fertilized chicken eggs as host. Overall, our studies deepen knowledge about reactive stroma responses in the bone endosteum that accompany prostate cancer metastasis to trabecular bone, with potential implications to therapeutically target this process in patients. Cancer Res; 77(21); 5977-88. ©2017 AACR.


Assuntos
Osso e Ossos/metabolismo , Integrinas/metabolismo , Neoplasias da Próstata/metabolismo , Tenascina/metabolismo , Animais , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/secundário , Osso e Ossos/patologia , Adesão Celular , Linhagem Celular Tumoral , Movimento Celular , Embrião de Galinha , Membrana Corioalantoide/metabolismo , Integrinas/genética , Masculino , Organoides/metabolismo , Organoides/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Ligação Proteica , Interferência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA