Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanoscale ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39049683

RESUMO

Red luminophores displaying large Stokes shift and high-quantum yields are obtained when gold salts are reacted with proteins under strongly alkaline conditions. Although bovine serum albumin (BSA) has mainly been used as a protein template, other attempts to prepare red luminophores have been proposed using other proteins. Here, we report on the structural characterization and nonlinear optical properties of insulin-gold conjugates. Such conjugates display strong luminescence at ∼670 nm with quantum yields that reach 5.4%. They also display long luminescence lifetimes allowing efficient reactive oxygen species generation, with a quantum yield of 1O2 generation reaching 13%. In addition, they exhibit remarkable nonlinear optical properties and in particular a strong two-photon excited fluorescence (TPEF) cross section in the range of 800-1100 nm. By combining experimental studies and time-dependent density functional theory simulations (TD-DFT), we show the formation of insulin-Au(III) conjugates. The interaction of Au(III) ions with the aromatic rings of tyrosine induces charge transfer-like excitation in the visible range. Experimental investigations, together with molecular dynamics simulations of insulin and calculations of electronic properties in a model system, are performed to explore the origin of optical features and the structure-optical property relationship, leading the way to new concepts for nonlinear optics using protein-Au(III) conjugates.

2.
Nanomaterials (Basel) ; 14(12)2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38921910

RESUMO

Identification of a natural-based sensitizer with optimal stability and efficiency for dye-sensitized solar cell (DSSC) application remains a challenging task. Previously, we proposed a new class of sensitizers based on bio-nano hybrids. These systems composed of natural cyanidin dyes interacting with silver nanoclusters (NCs) have demonstrated enhanced opto-electronic and photovoltaic properties. In this study, we explore the doping of silver nanocluster within a cyanidin-Ag3 hybrid employing Density Functional Theory (DFT) and its time-dependent counterpart (TDDFT). Specifically, we investigate the influence of coinage metal atoms (Au and Cu) on the properties of the cyanidin-Ag3 system. Our findings suggest that cyanidin-Ag2Au and cyanidin-AgAuCu emerge as the most promising candidates for improved light harvesting efficiency, increased two-photon absorption, and strong coupling to the TiO2 surface. These theoretical predictions suggest the viability of replacing larger silver NCs with heterometallic trimers such as Ag2Au or AgAuCu, presenting new avenues for utilizing bio-nano hybrids at the surface for DSSC application.

3.
Int J Mol Sci ; 24(19)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37834008

RESUMO

Point mutations in the 23S rRNA, gyrA, and gyrB genes can confer resistance to clarithromycin (CAM) and levofloxacin (LVX) by altering target sites or protein structure, thereby reducing the efficacy of standard antibiotics in the treatment of Helicobacter pylori infections. Considering the confirmed primary CAM and LVX resistance in H. pylori infected patients from southern Croatia, we performed a molecular genetic analysis of three target genes (23S rRNA, gyrA, and gyrB) by PCR and sequencing, together with computational molecular docking analysis. In the CAM-resistant isolates, the mutation sites in the 23S rRNA gene were A2142C, A2142G, and A2143G. In addition, the mutations D91G and D91N in GyrA and N481E and R484K in GyrB were associated with resistance to LVX. Molecular docking analyses revealed that mutant H. pylori strains with resistance-related mutations exhibited a lower susceptibility to CAM and LVX compared with wild-type strains due to significant differences in non-covalent interactions (e.g., hydrogen bonds, ionic interactions) leading to destabilized antibiotic-protein binding, ultimately resulting in antibiotic resistance. Dual resistance to CAM and LVX was found, indicating the successful evolution of H. pylori resistance to unrelated antimicrobials and thus an increased risk to human health.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Humanos , Claritromicina/farmacologia , Levofloxacino/farmacologia , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/genética , RNA Ribossômico 23S/genética , Simulação de Acoplamento Molecular , Croácia , Farmacorresistência Bacteriana/genética , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Biópsia
4.
ACS Nano ; 17(17): 16644-16655, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37638669

RESUMO

Nanometer-scaled objects are known to have dimension-related properties, but sometimes the assembly of such objects can lead to the emergence of other properties. Here, we show the assembly of atomically precise gold nanoclusters into large fibrillar structures that are featuring excitation-dependent luminescence with an excitation-selective circularly polarized luminescence (CPL), even though all components are achiral. The origin of CPL in the assembly of atomic clusters has been attributed to the hierarchical organization of atomic clusters into fibrillar structures, mediated via a hydrogen bonding interaction with a surfactant. We follow the assembly process both experimentally and computationally showing the advance in the structural formation along with its chiroptical electronic properties, i.e., circular dichroism (CD) and CPL. Our study here can assist in the rational design of materials featuring chiroptical properties, thus leading to a controlled CPL activity.

5.
Angew Chem Int Ed Engl ; 61(43): e202209645, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36005739

RESUMO

Noble metal nanoclusters allow for the atomically-precise control of their composition. However, to create nanoclusters with pre-defined optical properties, comprehensive description of their structure-property relation is required. Here, we report the gold atom doping impact on one-photon and two-photon absorption (TPA) and luminescence properties of ligated silver nanoclusters via combined experimental studies and time-dependent density functional theory simulations (TD-DFT). We synthesized a series of Ag25-x Aux (DMBT)18 nanoclusters where x=0, 1 and 5-10. For Ag24 Au1 (DMBT)18 we demonstrate that the presence of the central Au dopant strongly influences linear and non-linear optical properties, increasing photoluminescence quantum yield and two-photon brightness, with respect to undoped silver nanoclusters. With improved TPA and luminescence, atomically-precise AuAg alloys presented in our work can serve as robust luminescent probes e.g. for bioimaging in the second biological window.

6.
ACS Chem Neurosci ; 13(4): 464-476, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35080850

RESUMO

The purpose of the current study is to uncover the impact of small liganded gold nanoclusters with 10 gold atoms and 10 glutathione ligands (Au10SG10) on several biomarkers in human microglia. We established the links connecting the atomically precise structure of Au10SG10 with their properties and changes in several biomolecules under oxidative stress. Au10SG10 caused the loss of mitochondrial metabolic activity, increased lipid peroxidation and translocation of an alarmin molecule, high mobility group box 1 (HMGB1), from the nucleus to the cytosol. Molecular modeling provided an insight into the location of amino acid interaction sites with Au10SG10 and the nature of bonds participating in these interactions. We show that Au10SG10 can bind directly to the defined sites of reduced, oxidized, and acetylated HMGB1. Further studies with similar complementary approaches merging live-cell analyses, determination of biomarkers, and cell functions could lead to optimized gold nanoclusters best suited for diagnostic and bioimaging purposes in neuroscience.


Assuntos
Ouro , Nanopartículas Metálicas , Ouro/química , Humanos , Ligantes , Nanopartículas Metálicas/química , Microglia , Modelos Moleculares
7.
Int J Mol Sci ; 22(5)2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33670858

RESUMO

Interleukin-6 (IL-6) is involved in physiological and pathological processes. Different pharmacological agents have been developed to block IL-6 deleterious effects and to recover homeostatic IL-6 signaling. One of the proposed nanostructures in pre-clinical investigations which reduced IL-6 concentrations is polyglycerol dendrimer, a nano-structure with multiple sulfate groups. The aim of the present study was to uncover the type of binding between critical positions in the human IL-6 structure available for binding dPGS and compare it with heparin sulfate binding. We studied these interactions by performing docking simulations of dPGS and heparins with human IL-6 using AutoDock Vina. These molecular docking analyses indicate that the two ligands have comparable affinities for the positively charged positions on the surface of IL-6. All-atom molecular dynamics simulations (MD) employing Gromacs were used to explore the binding sites and binding strengths. Results suggest two major binding sites and show that the strengths of binding are similar for heparin and dPGS (-5.5-6.4 kcal/ mol). dPGS or its analogs could be used in the therapeutic intervention in sepsis and inflammatory disorders to reduce unbound IL-6 in the plasma or tissues and its binding to the receptors. We propose that analogs of dPGS could specifically block IL-6 binding in the desired signaling mode and would be valuable new probes to establish optimized therapeutic intervention in inflammation.


Assuntos
Dendrímeros/química , Glicerol/farmacologia , Interleucina-6/antagonistas & inibidores , Modelos Moleculares , Polímeros/farmacologia , Anti-Inflamatórios/farmacologia , Heparina , Humanos , Inflamação , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica
8.
Nanoscale ; 13(5): 3173-3183, 2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33527928

RESUMO

Ultra-small gold nanoclusters (AuNCs) with designed sizes and ligands are gaining popularity for biomedical purposes and ultimately for human imaging and therapeutic applications. Human non-tumor brain cells, astrocytes, are of particular interest because they are abundant and play a role in functional regulation of neurons under physiological and pathological conditions. Human primary astrocytes were treated with AuNCs of varying sizes (Au10, Au15, Au18, Au25) and ligand composition (glutathione, polyethylene glycol, N-acetyl cysteine). Concentration and time-dependent studies showed no significant cell loss with AuNC concentrations <10 µM. AuNC treatment caused marked differential astrocytic responses at the organellar and transcription factor level. The effects were exacerbated under severe oxidative stress induced by menadione. Size-dependent effects were most remarkable with the smallest and largest AuNCs (10, 15 Au atoms versus 25 Au atoms) and might be related to the accessibility of biological targets toward the AuNC core, as demonstrated by QM/MM simulations. In summary, these findings suggest that AuNCs are not inert in primary human astrocytes, and that their sizes play a critical role in modulation of organellar and redox-responsive transcription factor homeostasis.


Assuntos
Ouro , Nanopartículas Metálicas , Astrócitos , Humanos , Ligantes , Fatores de Transcrição
9.
Biochim Biophys Acta Gen Subj ; 1864(7): 129605, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32222547

RESUMO

BACKGROUND: Ammonia lyases are enzymes of industrial and biomedical interest. Knowledge of structure-dynamics-function relationship in ammonia lyases is instrumental for exploiting the potential of these enzymes in industrial or biomedical applications. METHODS: We investigated the conformational changes in the proximity of the catalytic pocket of a 3-methylaspartate ammonia lyase (MAL) as a model system. At this scope, we used microsecond all-atom molecular dynamics simulations, analyzed with dimensionality reduction techniques, as well as in terms of contact networks and correlated motions. RESULTS: We identify two regulatory elements in the MAL structure, i.e., the ß5-α2 loop and the helix-hairpin-loop subdomain. These regulatory elements undergo conformational changes switching from 'occluded' to 'open' states. The rearrangements are coupled to changes in the accessibility of the active site. The ß5-α2 loop and the helix-hairpin-loop subdomain modulate the formation of tunnels from the protein surface to the catalytic site, making the active site more accessible to the substrate when they are in an open state. CONCLUSIONS: Our work pinpoints a sequential mechanism, in which the helix-hairpin-loop subdomain of MAL needs to break a subset of intramolecular interactions first to favor the displacement of the ß5-α2 loop. The coupled conformational changes of these two elements contribute to modulate the accessibility of the catalytic site. GENERAL SIGNIFICANCE: Similar molecular mechanisms can have broad relevance in other ammonia lyases with similar regulatory loops. Our results also imply that it is important to account for protein dynamics in the design of variants of ammonia lyases for industrial and biomedical applications.


Assuntos
Amônia-Liases , Amônia-Liases/química , Amônia-Liases/metabolismo , Domínio Catalítico
10.
Phys Chem Chem Phys ; 21(43): 23916-23921, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31657396

RESUMO

Gold nanoclusters (Au NCs) are an emerging class of luminescent nanomaterials but still suffer from moderate photoluminescence quantum yields. Recent efforts have focused on tailoring their emission properties. Introducing zwitterionic ligands to cap the metallic kernel is an efficient approach to enhance their one-photon excitation fluorescence intensity. In this work, we extend this concept to the nonlinear optical regime, i.e., two-photon excitation fluorescence. For a proper comparison between theory and experiment, both ligand and solvent effects should be considered. The effects of ligand shell size and of aqueous solvent on the optical properties of zwitterion functionalized gold nanoclusters have been studied by performing quantum mechanics/molecular mechanics (QM/MM) simulations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA