Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Fungi (Basel) ; 9(5)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37233274

RESUMO

Although most mycoses are superficial, the dermatophyte Trichophyton rubrum can cause systemic infections in patients with a weakened immune system, resulting in serious and deep lesions. The aim of this study was to analyze the transcriptome of a human monocyte/macrophage cell line (THP-1) co-cultured with inactivated germinated T. rubrum conidia (IGC) in order to characterize deep infection. Analysis of macrophage viability by lactate dehydrogenase quantification showed the activation of the immune system after 24 h of contact with live germinated T. rubrum conidia (LGC). After standardization of the co-culture conditions, the release of the interleukins TNF-α, IL-8, and IL-12 was quantified. The greater release of IL-12 was observed during co-culturing of THP-1 with IGC, while there was no change in the other cytokines. Next-generation sequencing of the response to T. rubrum IGC identified the modulation of 83 genes; of these, 65 were induced and 18 were repressed. The categorization of the modulated genes showed their involvement in signal transduction, cell communication, and immune response pathways. In total, 16 genes were selected for validation and Pearson's correlation coefficient was 0.98, indicating a high correlation between RNA-seq and qPCR. Modulation of the expression of all genes was similar for LGC and IGC co-culture; however, the fold-change values were higher for LGC. Due to the high expression of the IL-32 gene in RNA-seq, we quantified this interleukin and observed an increased release in co-culture with T. rubrum. In conclusion, the macrophages-T. rubrum co-culture model revealed the ability of these cells to modulate the immune response, as demonstrated by the release of proinflammatory cytokines and the RNA-seq gene expression profile. The results obtained permit to identify possible molecular targets that are modulated in macrophages and that could be explored in antifungal therapies involving the activation of the immune system.

2.
Braz J Microbiol ; 51(4): 1585-1591, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32519213

RESUMO

Fungal growth and development depend on adaptation to the particular pH of their environment. Ambient pH sensing implies the activation of the pacC signaling pathway, which then acts as a critical regulator for different physiological conditions. The PacC transcription factor may also be associated with the control of salt stress tolerance. In a pH-dependent manner, salinity stress is surpassed by changes in gene expression and coordinated activation of other signaling pathways, thus permitting survival in the challenging environment. In this study, we assessed the regulatory role of Trichophyton interdigitale PacC in response to pH variation and salinity stress. By employing gene expression analysis, we evaluated the influence of PacC in the modulation of salt stress-related genes, including the transcription factors crz1, egr2, and the MAP kinase hog1 in the dermatophyte T. interdigitale. In our analysis, we also included the evaluation of a potassium/sodium efflux P-type ATPase aiming to identify the role of PacC on its ion pumping activity. Here we demonstrated that salinity stress and buffered pH conditions might affect the pacC gene modulation in the dermatophyte T. interdigitale.


Assuntos
Arthrodermataceae , Proteínas Fúngicas/genética , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Arthrodermataceae/genética , Arthrodermataceae/metabolismo , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Concentração de Íons de Hidrogênio
3.
Genet Mol Biol ; 43(3): e20190374, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32584919

RESUMO

Transcription factors play an important role in fungal environmental adaptive process by promoting adjustment to challenging stimuli via gene modulation and activation of signaling networks. The transcription factor encoded by the pac-3/rim101/pacC gene is involved in pH regulation and is associated with a wide variety of cellular functions. The deletion of pac-3 affects fungal development. In Neurospora crassa, the Δpac-3 strain presents diminished aerial growth and reduced conidiation. However, the PAC-3-regulated genes associated with this altered phenotype have not been elucidated. In this study, we used RNA-seq to analyze the phenotypic plasticity induced after pac-3 deletion in the filamentous fungus N. crassa cultivated in media supplemented with sufficient or limited inorganic phosphate. Genes related to morphology, hyphal development, and conidiation were of particular interest in this study. Our results suggest a pac-3 dependency in gene regulation in a Pi-dependent manner. Furthermore, our analysis suggested that the fungus attempts to overcome the deletion effects in a Δpac-3 mutant through a complex combined regulatory mechanism. Finally, the modulatory responses observed in the Δpac-3 strain, a double mutant generated based on the Δmus-52 mutant strain, is strain-specific, highlighting that the phenotypic impact may be attributed to pac-3 absence despite the combined mus-52 deletion.

4.
Biochem J ; 477(5): 873-885, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32022226

RESUMO

The environmental challenges imposed onto fungal pathogens require a dynamic metabolic modulation, which relies on activation or repression of critical factors and is essential for the establishment and perpetuation of host infection. Wherefore, to overcome the different host microenvironments, pathogens not only depend on virulence factors but also on metabolic flexibility, which ensures their dynamic response to stress conditions in the host. Here, we evaluate Trichophyton rubrum interaction with keratin from a metabolic perspective. We present information about gene modulation of the dermatophyte during early infection stage after shifting from glucose- to keratin-containing culture media, in relation to its use of glucose as the carbon source. Analyzing T. rubrum transcriptome using high-throughput RNA-sequencing technology, we identified the modulation of essential genes related to nitrogen, fatty acid, ergosterol, and carbohydrate metabolisms, among a myriad of other genes necessary for the growth of T. rubrum in keratinized tissues. Our results provide reliable and critical strategies for adaptation to keratin and confirm that the urea-degrading activity associated with the reduction in disulfide bonds and proteolytic activity facilitated keratin degradation. The global modulation orchestrates the responses that support virulence and the proper adaptation to keratin compared with glucose as the carbon source. The gene expression profiling of the host-pathogen interaction highlights candidate genes involved in fungal adaptation and survival and elucidates the machinery required for the establishment of the initial stages of infection.


Assuntos
Arthrodermataceae/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação Fúngica da Expressão Gênica , Análise de Sequência de RNA/métodos , Transcrição Gênica/fisiologia , Trichophyton/metabolismo , Arthrodermataceae/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Trichophyton/genética
5.
Pathogens ; 8(4)2019 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-31795354

RESUMO

The dermatophyte Trichophyton rubrum is the main causative agent of dermatophytoses worldwide. Although a superficial mycosis, its incidence has been increasing especially among diabetic and immunocompromised patients. Terbinafine is commonly used for the treatment of infections caused by dermatophytes. However, cases of resistance of T. rubrum to this allylamine were reported even with the efficacy of this drug. The present study is the first to evaluate the effect of terbinafine using a co-culture model of T. rubrum and human keratinocytes, mimicking a fungus-host interaction, in conjunction with RNA-seq technique. Our data showed the repression of several genes involved in the ergosterol biosynthesis cascade and the induction of genes encoding major facilitator superfamily (MFS)- and ATP-binding cassette superfamily (ABC)-type membrane transporter which may be involved in T. rubrum mechanisms of resistance to this drug. We observed that some genes reported in the scientific literature as candidates of new antifungal targets were also modulated. In addition, we found the modulation of several genes that are hypothetical in T. rubrum but that possess known orthologs in other dermatophytes. Taken together, the results indicate that terbinafine can act on various targets related to the physiology of T. rubrum other than its main target of ergosterol biosynthetic pathway.

6.
BMC Genomics ; 20(1): 411, 2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31117938

RESUMO

BACKGROUND: Trichophyton rubrum is the main etiological agent of skin and nail infections worldwide. Because of its keratinolytic activity and anthropophilic nature, infection models based on the addition of protein substrates have been employed to assess transcriptional profiles and to elucidate aspects related to host-pathogen interactions. Chalcones are widespread compounds with pronounced activity against dermatophytes. The toxicity of trans-chalcone towards T. rubrum is not fully understood but seems to rely on diverse cellular targets. Within this context, a better understanding of the mode of action of trans-chalcone may help identify new strategies of antifungal therapy and reveal new chemotherapeutic targets. This work aimed to assess the transcriptional profile of T. rubrum grown on different protein sources (keratin or elastin) to mimic natural infection sites and exposed to trans-chalcone in order to elucidate the mechanisms underlying the antifungal activity of trans-chalcone. RESULTS: Overall, the use of different protein sources caused only slight differences in the transcriptional profile of T. rubrum. The main differences were the modulation of proteases and lipases in gene categories when T. rubrum was grown on keratin and elastin, respectively. In addition, some genes encoding heat shock proteins were up-regulated during the growth of T. rubrum on keratin. The transcriptional profile of T. rubrum exposed to trans-chalcone included four main categories: fatty acid and lipid metabolism, overall stress response, cell wall integrity pathway, and alternative energy metabolism. Consistently, T. rubrum Mapk was strongly activated during the first hours of trans-chalcone exposure. Noteworthy, trans-chalcone inhibited genes involved in keratin degradation. The results also showed effects of trans-chalcone on fatty acid synthesis and metabolic pathways involved in acetyl-CoA supply. CONCLUSION: Our results suggest that the mode of action of trans-chalcone is related to pronounced changes in fungal metabolism, including an imbalance between fatty acid synthesis and degradation that interferes with cell membrane and cell wall integrity. In addition, this compound exerts activity against important virulence factors. Taken together, trans-chalcone acts on targets related to dermatophyte physiology and the infection process.


Assuntos
Parede Celular/química , Chalcona/farmacologia , Ácidos Graxos/metabolismo , Proteínas Fúngicas/metabolismo , Tinha/metabolismo , Trichophyton/metabolismo , Fatores de Virulência/antagonistas & inibidores , Antifúngicos/farmacologia , Parede Celular/genética , Elastina/metabolismo , Proteínas Fúngicas/genética , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Humanos , Queratinas/metabolismo , Transdução de Sinais , Tinha/tratamento farmacológico , Tinha/microbiologia , Trichophyton/efeitos dos fármacos , Trichophyton/genética
7.
Genes (Basel) ; 9(7)2018 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-30029541

RESUMO

The dermatophyte Trichophyton rubrum is the major fungal pathogen of skin, hair, and nails that uses keratinized substrates as the primary nutrients during infection. Few strategies are available that permit a better understanding of the molecular mechanisms involved in the interaction of T. rubrum with the host because of the limitations of models mimicking this interaction. Dual RNA-seq is a powerful tool to unravel this complex interaction since it enables simultaneous evaluation of the transcriptome of two organisms. Using this technology in an in vitro model of co-culture, this study evaluated the transcriptional profile of genes involved in fungus-host interactions in 24 h. Our data demonstrated the induction of glyoxylate cycle genes, ERG6 and TERG_00916, which encodes a carboxylic acid transporter that may improve the assimilation of nutrients and fungal survival in the host. Furthermore, genes encoding keratinolytic proteases were also induced. In human keratinocytes (HaCat) cells, the SLC11A1, RNASE7, and CSF2 genes were induced and the products of these genes are known to have antimicrobial activity. In addition, the FLG and KRT1 genes involved in the epithelial barrier integrity were inhibited. This analysis showed the modulation of important genes involved in T. rubrum⁻host interaction, which could represent potential antifungal targets for the treatment of dermatophytoses.

8.
Radiol. bras ; 38(1): 37-43, jan.-fev. 2005. tab
Artigo em Português | LILACS | ID: lil-394971

RESUMO

OBJETIVO: Integração dos Sistemas de Informação em Radiologia (RIS - "Radiology Information System") e de Arquivamento e Comunicação de Imagens (PACS - "Picture Archiving and Communication System") no Serviço de Radiodiagnóstico do Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo, para possibilitar a consulta remota de laudos e imagens associadas. MATERIAIS E MÉTODOS: A integração RIS/PACS implementada é feita em tempo real, no momento da consulta, utilizando tecnologias "web" e técnicas de programação para "intranet/internet". RESULTADOS: A aplicação "web" permite a consulta pela "intranet" do hospital dos laudos de exames e imagens associadas através de nome, sobrenome, número de registro hospitalar dos pacientes ou por modalidade, dentro de um determinado período. O visualizador possibilita que o usuário navegue pelas imagens, podendo realizar algumas funções básicas como "zoom", controle de brilho e contraste e visualização de imagens lado a lado. CONCLUSÃO: A integração RIS/PACS diminui o risco de inconsistências, através da redução do número de interfaces entre bases de dados com grande redundância de informação, proporcionando um ambiente de trabalho rápido e seguro para consulta de laudos radiológicos e visualização de imagens associadas.


OBJECTIVE: Integration of the Radiology Information System (RIS) and the Picture Archiving and Communication System (PACS) of the Radiodiagnosis Service of "Hospital das Clínicas de Ribeirão Preto da Universidade de São Paulo", Brazil, to allow remote access to reports and associated images. MATERIALS AND METHODS: RIS/PACS integration occurs in real time at the moment of consultation, using web technologies and programming techniques for intranet/internet. RESULTS: This web application allows reports and associated images viewing through the medical center intranet. Search is based on the patients' first name, last name, hospital number identification and exam modality, within a time period. The viewer allows image navigation and presents some basic functions such as zoom, brightness/contrast control and side-by-side image visualization. CONCLUSION: RIS/PACS integration minimizes the risk of inconsistencies, through the reduction of the number of interfaces among data bases with great information redundancy, providing a fast and safe work environment for radiology reports, consultation and visualization of associated images.


Assuntos
Informática em Saúde Pública , Sistemas de Informação em Radiologia/organização & administração , Sistemas de Informação em Radiologia/tendências , Tecnologia Radiológica , Brasil , Sistemas de Gerenciamento de Base de Dados , Hospitais Públicos , Sistemas de Informação
9.
J Digit Imaging ; 17(3): 226-33, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15534755

RESUMO

Integration of a Radiology Information System (RIS) and a Picture Archiving and Communication System (PACS) reduces the risk of inconsistent data by reducing interfaces among databases that contain largely redundant information. Furthermore, RIS/PACS integration is the basis for a filmless radiology facility. Web technology is based on international standards and supplies the main features for the RIS/PACS integration task based on a client/server model. This article presents a web-based system developed to manage and distribute images and diagnostic information within the University Hospital of Ribeirão Preto (HCRP) at the University of Sao Paulo.


Assuntos
Armazenamento e Recuperação da Informação , Internet , Sistemas de Informação em Radiologia , Integração de Sistemas , Brasil , Discos Compactos , Redes de Comunicação de Computadores , Hospitais Universitários , Humanos , Processamento de Imagem Assistida por Computador , Gestão da Informação , Imageamento por Ressonância Magnética , Serviço Hospitalar de Radiologia , Telerradiologia , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA