Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Adv Mater ; : e2401534, 2024 May 25.
Artigo em Holandês | MEDLINE | ID: mdl-38795019

RESUMO

The exploration of 1D magnetism, frequently portrayed as spin chains, constitutes an actively pursued research field that illuminates fundamental principles in many-body problems and applications in magnonics and spintronics. The inherent reduction in dimensionality often leads to robust spin fluctuations, impacting magnetic ordering and resulting in novel magnetic phenomena. Here, structural, magnetic, and optical properties of highly anisotropic 2D van der Waals antiferromagnets that uniquely host spin chains are explored. First-principle calculations reveal that the weakest interaction is interchain, leading to essentially 1D magnetic behavior in each layer. With the additional degree of freedom arising from its anisotropic structure, the structure is engineered by alloying, varying the 1D spin chain lengths using electron beam irradiation, or twisting for localized patterning, and spin textures are calculated, predicting robust stability of the antiferromagnetic ordering. Comparing with other spin chain magnets, these materials are anticipated to bring fresh perspectives on harvesting low-dimensional magnetism.

2.
J Phys Condens Matter ; 36(33)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38722324

RESUMO

Anisotropic lattice deformation plays an important role in the quantum mechanics of solid state physics. The possibility of mediating the competition and cooperation among different order parameters by applyingin situstrain/stress on quantum materials has led to discoveries of a variety of elasto-quantum effects on emergent phenomena. It has become increasingly critical to have the capability of combining thein situstrain tuning with x-ray techniques, especially those based on synchrotrons, to probe the microscopic elasto-responses of the lattice, spin, charge, and orbital degrees of freedom. Herein, we briefly review the recent studies that embarked on utilizing elasto-x-ray characterizations on representative material systems and demonstrated the emerging opportunities enabled by this method. With that, we further discuss the promising prospect in this rising area of quantum materials research and the bright future of elasto-x-ray techniques.

3.
Sci Adv ; 10(21): eadk3321, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38781340

RESUMO

Symmetry plays a key role in determining the physical properties of materials. By Neumann's principle, the properties of a material remain invariant under the symmetry operations of the space group to which the material belongs. Continuous phase transitions are associated with a spontaneous reduction in symmetry. Less common are examples where proximity to a continuous phase transition leads to an increase in symmetry. We find signatures of an emergent tetragonal symmetry close to a charge density wave (CDW) bicritical point in a fundamentally orthorhombic material, ErTe3, for which the two distinct CDW phase transitions are tuned via anisotropic strain. We first establish that tension along the a axis favors an abrupt rotation of the CDW wave vector from the c to a axis and infer the presence of a bicritical point where the two continuous phase transitions meet. We then observe a divergence of the nematic elastoresistivity approaching this putative bicritical point, indicating an emergent tetragonality in the critical behavior.

4.
Sci Adv ; 9(47): eadj5200, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38000034

RESUMO

Field-induced superconductivity is a rare phenomenon where an applied magnetic field enhances or induces superconductivity. Here, we use applied stress as a control switch between a field-tunable superconducting state and a robust non-field-tunable state. This marks the first demonstration of a strain-tunable superconducting spin valve with infinite magnetoresistance. We combine tunable uniaxial stress and applied magnetic field on the ferromagnetic superconductor Eu(Fe0.88Co0.12)2As2 to shift the field-induced zero-resistance temperature between 4 K and a record-high value of 10 K. We use x-ray diffraction and spectroscopy measurements under stress and field to reveal that strain tuning of the nematic order and field tuning of the ferromagnetism act as independent control parameters of the superconductivity. Combining comprehensive measurements with DFT calculations, we propose that field-induced superconductivity arises from a novel mechanism, namely, the uniquely dominant effect of the Eu dipolar field when the exchange field splitting is nearly zero.

5.
Neuron ; 111(24): 3953-3969.e5, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37848024

RESUMO

Despite substantial progress in understanding the biology of axon regeneration in the CNS, our ability to promote regeneration of the clinically important corticospinal tract (CST) after spinal cord injury remains limited. To understand regenerative heterogeneity, we conducted patch-based single-cell RNA sequencing on rare regenerating CST neurons at high depth following PTEN and SOCS3 deletion. Supervised classification with Garnett gave rise to a Regeneration Classifier, which can be broadly applied to predict the regenerative potential of diverse neuronal types across developmental stages or after injury. Network analyses highlighted the importance of antioxidant response and mitochondrial biogenesis. Conditional gene deletion validated a role for NFE2L2 (or NRF2), a master regulator of antioxidant response, in CST regeneration. Our data demonstrate a universal transcriptomic signature underlying the regenerative potential of vastly different neuronal populations and illustrate that deep sequencing of only hundreds of phenotypically identified neurons has the power to advance regenerative biology.


Assuntos
Axônios , Traumatismos da Medula Espinal , Humanos , Axônios/fisiologia , Regeneração Nervosa/genética , Antioxidantes , Neurônios , Traumatismos da Medula Espinal/genética , Tratos Piramidais/fisiologia , Análise de Célula Única
6.
Nat Mater ; 22(8): 985-991, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37349393

RESUMO

The origin of nematicity in FeSe remains a critical outstanding question towards understanding unconventional superconductivity in proximity to nematic order. To understand what drives the nematicity, it is essential to determine which electronic degree of freedom admits a spontaneous order parameter independent from the structural distortion. Here we use X-ray linear dichroism at the Fe K pre-edge to measure the anisotropy of the 3d orbital occupation as a function of in situ applied stress and temperature across the nematic transition. Along with using X-ray diffraction to precisely quantify the strain state, we reveal a lattice-independent, spontaneously ordered orbital polarization within the nematic phase, as well as an orbital polarizability that diverges as the transition is approached from above. These results provide strong evidence that spontaneous orbital polarization serves as the primary order parameter of the nematic phase.

7.
Front Neurosci ; 17: 1180308, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37360167

RESUMO

Alcohol consumption during pregnancy is associated with Fetal Alcohol Spectrum Disorders (FASD) that results in a continuum of central nervous system (CNS) deficits. Emerging evidence from both preclinical and clinical studies indicate that the biological vulnerability to chronic CNS disease in FASD populations is driven by aberrant neuroimmune actions. Our prior studies suggest that, following minor nerve injury, prenatal alcohol exposure (PAE) is a risk factor for developing adult-onset chronic pathological touch sensitivity or allodynia. Allodynia in PAE rats occurs concurrently with heightened proinflammatory peripheral and spinal glial-immune activation. However, minor nerve-injured control rats remain non-allodynic, and corresponding proinflammatory factors are unaltered. A comprehensive molecular understanding of the mechanism(s) that underlie PAE-induced proinflammatory bias during adulthood remains elusive. Non-coding circular RNAs (circRNAs) are emerging as novel modulators of gene expression. Here, we hypothesized that PAE induces dysregulation of circRNAs that are linked to immune function under basal and nerve-injured conditions during adulthood. Utilizing a microarray platform, we carried out the first systematic profiling of circRNAs in adult PAE rats, prior to and after minor nerve injury. The results demonstrate a unique circRNA profile in adult PAE rats without injury; 18 circRNAs in blood and 32 spinal circRNAs were differentially regulated. Following minor nerve injury, more than 100 differentially regulated spinal circRNAs were observed in allodynic PAE rats. Bioinformatic analysis identified that the parental genes of these circRNAs are linked to the NF-κB complex, a central transcription factor for pain-relevant proinflammatory cytokines. Quantitative real-time PCR was employed to measure levels of selected circRNAs and linear mRNA isoforms. We have validated that circVopp1 was significantly downregulated in blood leukocytes in PAE rats, concurrent with downregulation of Vopp1 mRNA levels. Spinal circVopp1 levels were upregulated in PAE rats, regardless of nerve injury. Additionally, PAE downregulated levels of circItch and circRps6ka3, which are linked to immune regulation. These results demonstrate that PAE exerts long-lasting dysregulation of circRNA expression in blood leukocytes and the spinal cord. Moreover, the spinal circRNA expression profile following peripheral nerve injury is differentially modulated by PAE, potentially contributing to PAE-induced neuroimmune dysregulation.

8.
iScience ; 25(11): 105383, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36339257

RESUMO

Axonal repair is critical for functional recovery after injury of the CNS. We previously reported that neuronal PTEN deletion exhibits an age-dependent decline in promoting axon regeneration from the corticospinal tract (CST). How sprouting of uninjured axons, a naturally occurring form of axonal repair, is impacted by age is unknown. We assessed CST sprouting after unilateral pyramidotomy in PTEN and/or SOCS3-deleted mice at different ages. While PTEN deletion enhances sprouting independently of age, SOCS3 deletion loses its sprouting-promoting effect with age. The synergistic effect of PTEN/SOCS3 co-deletion on CST sprouting is rapidly lost with increased age. Overall, promoting sprouting appears more robust across age than regeneration, yet distinct molecular pathways are differentially impacted by age. Importantly, six-week delayed PTEN deletion promotes CST sprouting across age groups, supporting a clinically relevant time frame for this neural repair strategy independently of age.

9.
Phys Rev Lett ; 129(2): 027203, 2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35867461

RESUMO

Symmetric anisotropic interaction can be ferromagnetic and antiferromagnetic at the same time but for different crystallographic axes. We show that the competition of anisotropic interactions of orthogonal irreducible representations can be a general route to obtain new exotic magnetic states. We demonstrate it here by observing the emergence of a continuously tunable 12-layer spatial spin modulation when distorting the square-lattice planes in the quasi-two-dimensional antiferromagnetic Sr_{2}IrO_{4} under in situ shear strain. This translation-symmetry-breaking phase is a result of an unusual strain-activated anisotropic interaction which is at the fourth order and competing with the inherent quadratic anisotropic interaction. Such a mechanism of competing anisotropy is distinct from that among the ferromagnetic, antiferromagnetic, and/or the Dzyaloshinskii-Moriya interactions, and it could be widely applicable and highly controllable in low-dimensional magnets.

10.
Nat Mater ; 20(11): 1519-1524, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34446865

RESUMO

Electronic nematicity in iron pnictide materials is coupled to both the lattice and the conducting electrons, which allows both structural and transport observables to probe nematic fluctuations and the order parameter. Here we combine simultaneous transport and X-ray diffraction measurements with in-situ tunable strain (elasto X-ray diffraction) to measure the temperature dependence of the shear modulus and elastoresistivity above the nematic transition and the spontaneous orthorhombicity and resistivity anisotropy below the nematic transition, all within a single sample of Ba(Fe0.96Co0.04)2As2. The ratio of transport to structural quantities is nearly temperature independent over a 74 K range and agrees between the ordered and disordered phases. These results show that elasto X-ray diffraction is a powerful technique to probe the nemato-elastic and nemato-transport couplings, which have important implications to the nearby superconductivity. It also enables the measurement in the large strain limit, where the breakdown of the mean-field description reveals the intertwined nature of nematicity.


Assuntos
Eletrônica , Supercondutividade , Anisotropia , Temperatura , Difração de Raios X
11.
Brain Behav Immun ; 87: 339-358, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31918004

RESUMO

Previous reports show that moderate prenatal alcohol exposure (PAE) poses a risk factor for developing neuropathic pain following adult-onset peripheral nerve injury in male rats. Recently, evidence suggests that immune-related mechanisms underlying neuropathic pain in females are different compared to males despite the fact that both sexes develop neuropathy of similar magnitude and duration following chronic constriction injury (CCI) of the sciatic nerve. Data suggest that the actions of peripheral T cells play a greater role in mediating neuropathy in females. The goal of the current study is to identify specificity of immune cell and cytokine changes between PAE and non-PAE neuropathic females by utilizing a well-characterized rodent model of sciatic nerve damage, in an effort to unmask unique signatures of immune-related factors underlying the risk of neuropathy from PAE. Cytokines typically associated with myeloid cell actions such as interleukin (IL)-1ß, tumor necrosis factor (TNF), IL-6, IL-4 and IL-10 as well as the neutrophil chemoattractant CXCL1, are examined. In addition, transcription factors and cytokines associated with various differentiated T cell subtypes are examined (anti-inflammatory FOXP3, proinflammatory IL-17A, IL-21, ROR-γt, interferon (IFN)-γ and T-bet). Lymphocyte function associated antigen 1 (LFA-1) is an adhesion molecule expressed on peripheral immune cells including T cells, and regulates T cell activation and extravasation into inflamed tissue regions. A potential therapeutic approach was explored with the goal of controlling proinflammatory responses in neuroanatomical regions critical for CCI-induced allodynia by blocking LFA-1 actions using BIRT377. The data show profound development of hindpaw allodynia in adult non-PAE control females following standard CCI, but not following minor CCI, while minor CCI generated allodynia in PAE females. The data also show substantial increases in T cell-associated proinflammatory cytokine mRNA and proteins, along with evidence of augmented myeloid/glial activation (mRNA) and induction of myeloid/glial-related proinflammatory cytokines, CCL2, IL-1ß and TNF in discrete regions along the pain pathway (damaged sciatic nerve, dorsal root ganglia; DRG, and spinal cord). Interestingly, the characteristic anti-inflammatory IL-10 protein response to nerve damage is blunted in neuropathic PAE females. Moreover, T cell profiles are predominantly proinflammatory in neuropathic Sac and PAE females, augmented levels of Th17-specific proinflammatory cytokines IL-17A and IL-21, as well as the Th1-specific factor, T-bet, are observed. Similarly, the expression of RORγt, a critical transcription factor for Th17 cells, is detected in the spinal cord of neuropathic females. Blocking peripheral LFA-1 actions with intravenous (i.v.) BIRT377 reverses allodynia in Sac and PAE rats, dampens myeloid (IL-1ß, TNF, CXCL1)- and T cell-associated proinflammatory factors (IL-17A and RORγt) and spinal glial activation. Moreover, i.v. BIRT377 treatment reverses the blunted IL-10 response to CCI observed only in neuropathic PAE rats and elevates FOXP3 in pain-reversed Sac rats. Unexpectedly, intrathecal BIRT377 treatment is unable to alter allodynia in either Sac or PAE neuropathic females. Together, these data provide evidence that: 1) fully differentiated proinflammatory Th17 cells recruited at the sciatic nerve, DRGs and lumbar spinal cord may interact with the local environment to shape the immune responses underlying neuropathy in female rats, and, 2) PAE primes peripheral and spinal immune responses in adult females. PAE is a risk factor in females for developing peripheral neuropathy after minor nerve injury.


Assuntos
Neuralgia , Efeitos Tardios da Exposição Pré-Natal , Animais , Feminino , Hiperalgesia , Antígeno-1 Associado à Função Linfocitária , Masculino , Gravidez , Ratos , Medula Espinal
12.
Acta Neuropathol Commun ; 7(1): 54, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30961664

RESUMO

Recently, moderate prenatal alcohol exposure (PAE) was shown to be a risk factor for peripheral neuropathy following minor nerve injury. This effect coincides with elevated spinal cord astrocyte activation and ex vivo immune cell reactivity assessed by proinflammatory cytokine interleukin (IL) -1ß protein expression. Additionally, the ß2-integrin adhesion molecule, lymphocyte function-associated antigen-1 (LFA-1), a factor that influences the expression of the proinflammatory/anti-inflammatory cytokine network is upregulated. Here, we examine whether PAE increases the proinflammatory immune environment at specific anatomical sites critical in the pain pathway of chronic sciatic neuropathy; the damaged sciatic nerve (SCN), the dorsal root ganglia (DRG), and the spinal cord. Additionally, we examine whether inhibiting LFA-1 or IL-1ß actions in the spinal cord (intrathecal; i.t., route) could alleviate chronic neuropathic pain and reduce spinal and DRG glial activation markers, proinflammatory cytokines, and elevate anti-inflammatory cytokines. Results show that blocking the actions of spinal LFA-1 using BIRT-377 abolishes allodynia in PAE rats with sciatic neuropathy (CCI) of a 10 or 28-day duration. This effect is observed (utilizing immunohistochemistry; IHC, with microscopy analysis and protein quantification) in parallel with reduced spinal glial activation, IL-1ß and TNFα expression. DRG from PAE rats with neuropathy reveal significant increases in satellite glial activation and IL-1ß, while IL-10 immunoreactivity is reduced by half in PAE rats under basal and neuropathic conditions. Further, blocking spinal IL-1ß with i.t. IL-1RA transiently abolishes allodynia in PAE rats, suggesting that IL-1ß is in part, necessary for the susceptibility of adult-onset peripheral neuropathy caused by PAE. Chemokine mRNA analyses from SCN, DRG and spinal cord reveal that increased CCL2 occurs following CCI injury regardless of PAE and BIRT-377 treatment. These data demonstrate that PAE creates dysregulated proinflammatory IL-1ß and TNFα /IL-10 responses to minor injury in the sciatic-DRG-spinal pain pathway. PAE creates a risk for developing peripheral neuropathies, and LFA-1 may be a novel therapeutic target for controlling dysregulated neuroimmune actions as a consequence of PAE.


Assuntos
Antígeno-1 Associado à Função Linfocitária/imunologia , Neuralgia/imunologia , Efeitos Tardios da Exposição Pré-Natal/imunologia , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Medula Espinal/imunologia , Animais , Astrócitos/imunologia , Feminino , Imidazolidinas/administração & dosagem , Interleucina-10/imunologia , Interleucina-1beta/imunologia , Masculino , Microglia/imunologia , Mielite/imunologia , Gravidez , Ratos Long-Evans
13.
J Neuroinflammation ; 14(1): 254, 2017 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-29258553

RESUMO

BACKGROUND: Clinical studies show that prenatal alcohol exposure (PAE) results in effects that persist into adulthood. Experimental animal models of moderate PAE demonstrate that young adults with PAE display potentiated sensitivity to light touch, clinically termed allodynia, following sciatic nerve chronic constriction injury (CCI) that coincides with heightened spinal glial, spinal macrophage, and peripheral immune responses. However, basal touch sensitivity and corresponding glial and leukocyte activation are unaltered. Therefore, the current study explored whether the enduring pathological consequences of moderate PAE on sensory processing are unmasked only following secondary neural insult. METHODS: In middle-aged (1 year) Long Evans rats that underwent either prenatal saccharin exposure (control) or moderate PAE, we modified the well-characterized model of sciatic neuropathy, CCI, to study the effects of PAE on neuro-immune responses in adult offspring. Standard CCI manipulation required 4 chromic gut sutures, while a mild version applied a single suture loosely ligated around one sciatic nerve. Spinal glial immunoreactivity was examined using immunohistochemistry. The characterization and functional responses of leukocyte populations were studied using flow cytometry and cell stimulation assays followed by quantification of the proinflammatory cytokines interleukin-1beta (IL-1ß) and tumor necrosis factor-alpha (TNF-α). Data were statistically analyzed by ANOVA and unpaired t tests. RESULTS: The current report demonstrates that mild CCI generates robust allodynia only in PAE rats, while the pathological effects of PAE following the application of a standard CCI are revealed by enhanced allodynia and elevated spinal glial activation. Additionally, mild CCI increases spinal astrocyte activation but not microglia, suggesting astrocytes play a larger role in PAE-induced susceptibility to aberrant sensory processing. Leukocyte populations from PAE are altered under basal conditions (i.e., prior to secondary insult), as the distribution of leukocyte populations in lymphoid organs and other regions are different from those of controls. Lastly, following in vitro leukocyte stimulation, only PAE augments the immune response to antigen stimulation as assessed by heightened production of TNF-α and IL-1ß. CONCLUSIONS: These studies demonstrate PAE may prime spinal astrocytes and peripheral leukocytes that contribute to enduring susceptibility to adult-onset neuropathic pain that is not apparent until a secondary insult later in life.


Assuntos
Citocinas/metabolismo , Inflamação/etiologia , Leucócitos/metabolismo , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Ciática/complicações , Medula Espinal/patologia , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Modelos Animais de Doenças , Etanol/toxicidade , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Hiperalgesia/etiologia , Inflamação/metabolismo , Inflamação/patologia , Leucócitos/patologia , Masculino , Proteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Neuroglia/metabolismo , Neuroglia/patologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/patologia , Ratos , Ratos Long-Evans , Ciática/patologia , Medula Espinal/metabolismo , Baço/patologia
14.
Brain Behav Immun ; 61: 80-95, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28011263

RESUMO

A growing body of evidence indicates that prenatal alcohol exposure (PAE) may predispose individuals to secondary medical disabilities later in life. Animal models of PAE reveal neuroimmune sequelae such as elevated brain astrocyte and microglial activation with corresponding region-specific changes in immune signaling molecules such as cytokines and chemokines. The aim of this study was to evaluate the effects of moderate PAE on the development and maintenance of allodynia induced by chronic constriction injury (CCI) of the sciatic nerve in adult male rat offspring. Because CCI allodynia requires the actions of glial cytokines, we analyzed lumbar spinal cord glial and immune cell surface markers indicative of their activation levels, as well as sciatic nerve and dorsal root ganglia (DRG) cytokines in PAE offspring in adulthood. While PAE did not alter basal sensory thresholds before or after sham manipulations, PAE significantly potentiated adult onset and maintenance of allodynia. Microscopic analysis revealed exaggerated astrocyte and microglial activation, while flow cytometry data demonstrated increased proportions of immune cells with cell surface major histocompatibility complex II (MHCII) and ß-integrin adhesion molecules, which are indicative of PAE-induced immune cell activation. Sciatic nerves from CCI rats revealed that PAE potentiated the proinflammatory cytokines interleukin (IL)-1ß, IL-6 and tumor necrosis factor-alpha (TNFα) protein levels with a simultaneous robust suppression of the anti-inflammatory cytokine, IL-10. A profound reduction in IL-10 expression in the DRG of PAE neuropathic rats was also observed. Taken together, our results provide novel insights into the vulnerability that PAE produces for adult-onset central nervous system (CNS) pathological conditions from peripheral nerve injury.


Assuntos
Citocinas/metabolismo , Etanol/administração & dosagem , Gânglios Espinais/metabolismo , Microglia/metabolismo , Neuralgia/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Nervo Isquiático/metabolismo , Animais , Astrócitos/metabolismo , Feminino , Gânglios Espinais/fisiopatologia , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatologia , Masculino , Neuralgia/fisiopatologia , Medição da Dor , Gravidez , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Ratos , Ratos Long-Evans , Nervo Isquiático/fisiopatologia , Medula Espinal/metabolismo , Medula Espinal/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA