Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39155838

RESUMO

There is growing interest in limiting the use of fungicides and implementing innovative, environmentally friendly strategies, such as the use of beneficial bacteria-triggered immunity, to protect grapevines from natural pathogens. Therefore, we need rapid and innovative ways to translate the knowledge of the molecular mechanisms underlying the activation of grapevine defenses against pathogens to induced resistance. Here, we have implemented an in vivo minimally invasive approach to study the interaction between plants and beneficial bacteria based on metabolic signatures. Paraburkholderia phytofirmans strain PsJN and PsJN-grapevine were used as bacterial and plant-bacterium interaction models, respectively. Using an innovative tool, SpiderMass, based on water-assisted laser desorption ionization with an IR microsampling probe, we simultaneously detect metabolic and lipidomic species. A metabolomic spectrum was thus generated, which was used to build a library and identify the most variable and discriminative peaks between the two conditions. We then showed that caftaric acid (m/z 311.04), caftaric acid dimer (m/z 623.09), derived caftaric acid (m/z 653.15), and quercetin-O-glucuronide tended to accumulate in grapevine leaves after root bacterization with PsJN. In addition, together with these phenolic messengers, we identified lipid biomarkers such as palmitic acid, linoleic acid, and α-linoleic acid as important messengers of enhanced defense mechanisms in Chardonnay plantlets. Taken together, SpiderMass is the next-generation methodology for studying plant-microorganism metabolic interactions with the prospect of in vivo real-time analysis in viticulture.

2.
Phytopathology ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831567

RESUMO

Net blotch disease caused by Drechslera teres is a major fungal disease that affects barley (Hordeum vulgare) plants and can result in significant crop losses. In this study, we developed a deep-learning model to quantify net blotch disease symptoms on different days post-infection on seedling leaves using Cascade R-CNN (Region-Based Convolutional Neural Networks) and U-Net (a convolutional neural network) architectures. We used a dataset of barley leaf images with annotations of net blotch disease to train and evaluate the model. The model achieved an accuracy of 95% for cascade R-CNN in net blotch disease detection and a Jaccard index score of 0.99, indicating high accuracy in disease quantification and location. The combination of Cascade R-CNN and U-Net architectures improved the detection of small and irregularly shaped lesions in the images at 4-days post infection, leading to better disease quantification. To validate the model developed, we compared the results obtained by automated measurement with a classical method (necrosis diameter measurement) and a pathogen detection by real-time PCR. The proposed deep learning model could be used in automated systems for disease quantification and to screen the efficacy of potential biocontrol agents to protect against disease.

3.
BMC Health Serv Res ; 24(1): 478, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632568

RESUMO

High hospital occupancy degrades emergency department performance by increasing wait times, decreasing patient satisfaction, and increasing patient morbidity and mortality. Late discharges contribute to high hospital occupancy by increasing emergency department (ED) patient length of stay (LOS). We share our experience with increasing and sustaining early discharges at a 650-bed academic medical center in the United States. Our process improvement project followed the Institute of Medicine Model for Improvement of successive Plan‒Do‒Study‒Act cycles. We implemented multiple iterative interventions over 41 months. As a result, the proportion of discharge orders before 10 am increased from 8.7% at baseline to 22.2% (p < 0.001), and the proportion of discharges by noon (DBN) increased from 9.5% to 26.8% (p < 0.001). There was no increase in balancing metrics because of our interventions. RA-LOS (Risk Adjusted Length Of Stay) decreased from 1.16 to 1.09 (p = 0.01), RA-Mortality decreased from 0.65 to 0.61 (p = 0.62) and RA-Readmissions decreased from 0.92 to 0.74 (p < 0.001). Our study provides a roadmap to large academic facilities to increase and sustain the proportion of patients discharged by noon without negatively impacting LOS, 30-day readmissions, and mortality. Continuous performance evaluation, adaptability to changing resources, multidisciplinary engagement, and institutional buy-in were crucial drivers of our success.


Assuntos
Alta do Paciente , Readmissão do Paciente , Humanos , Fatores de Tempo , Tempo de Internação , Centros Médicos Acadêmicos , Serviço Hospitalar de Emergência , Estudos Retrospectivos
4.
Nat Protoc ; 19(5): 1291-1310, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38267717

RESUMO

Deep investigation of the microbiome of food-production and food-processing environments through whole-metagenome sequencing (WMS) can provide detailed information on the taxonomic composition and functional potential of the microbial communities that inhabit them, with huge potential benefits for environmental monitoring programs. However, certain technical challenges jeopardize the application of WMS technologies with this aim, with the most relevant one being the recovery of a sufficient amount of DNA from the frequently low-biomass samples collected from the equipment, tools and surfaces of food-processing plants. Here, we present the first complete workflow, with optimized DNA-purification methodology, to obtain high-quality WMS sequencing results from samples taken from food-production and food-processing environments and reconstruct metagenome assembled genomes (MAGs). The protocol can yield DNA loads >10 ng in >98% of samples and >500 ng in 57.1% of samples and allows the collection of, on average, 12.2 MAGs per sample (with up to 62 MAGs in a single sample) in ~1 week, including both laboratory and computational work. This markedly improves on results previously obtained in studies performing WMS of processing environments and using other protocols not specifically developed to sequence these types of sample, in which <2 MAGs per sample were obtained. The full protocol has been developed and applied in the framework of the European Union project MASTER (Microbiome applications for sustainable food systems through technologies and enterprise) in 114 food-processing facilities from different production sectors.


Assuntos
Microbiota , DNA/isolamento & purificação , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Manipulação de Alimentos/métodos , Microbiologia de Alimentos/métodos , Metagenoma , Metagenômica/métodos , Microbiota/genética , Análise de Sequência de DNA/métodos
5.
Eur J Cell Biol ; 103(1): 151381, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38183814

RESUMO

The facultative intracellular pathogen Shigella flexneri invades non-phagocytic epithelial gut cells. Through a syringe-like apparatus called type 3 secretion system, it injects effector proteins into the host cell triggering actin rearrangements leading to its uptake within a tight vacuole, termed the bacterial-containing vacuole (BCV). Simultaneously, Shigella induces the formation of large vesicles around the entry site, which we refer to as infection-associated macropinosomes (IAMs). After entry, Shigella ruptures the BCV and escapes into the host cytosol by disassembling the BCV remnants. Previously, IAM formation has been shown to be required for efficient BCV escape, but the molecular events associated with BCV disassembly have remained unclear. To identify host components required for BCV disassembly, we performed a microscopy-based screen to monitor the recruitment of BAR domain-containing proteins, which are a family of host proteins involved in membrane shaping and sensing (e.g. endocytosis and recycling) during Shigella epithelial cell invasion. We identified endosomal recycling BAR protein Sorting Nexin-8 (SNX8) localized to IAMs in a PI(3)P-dependent manner before BCV disassembly. At least two distinct IAM subpopulations around the BCV were found, either being recycled back to cellular compartments such as the plasma membrane or transitioning to become RAB11A positive "contact-IAMs" involved in promoting BCV rupture. The IAM subpopulation duality was marked by the exclusive recruitment of either SNX8 or RAB11A. Hindering PI(3)P production at the IAMs led to an inhibition of SNX8 recruitment at these compartments and delayed both, the step of BCV rupture time and successful BCV disassembly. Finally, siRNA depletion of SNX8 accelerated BCV rupture and unpeeling of BCV remnants, indicating that SNX8 is involved in controlling the timing of the cytosolic release. Overall, our work sheds light on how Shigella establishes its intracellular niche through the subversion of a specific set of IAMs.


Assuntos
Fosfatos de Fosfatidilinositol , Shigella , Humanos , Shigella/fisiologia , Vacúolos/metabolismo , Células Epiteliais/fisiologia , Shigella flexneri/genética , Células HeLa , Nexinas de Classificação/metabolismo
6.
Front Microbiol ; 13: 1030982, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36338070

RESUMO

Grapevine flowering is an important stage in the epidemiology of Botrytis cinerea, the causal agent of gray mold disease. To prevent infection and to minimize postharvest losses, the control of this necrotrophic fungus is mainly based on chemical fungicides application. However, there is a growing interest in other control alternatives. Among them, the use of beneficial microorganisms appears as an eco-friendly strategy. This study aims to investigate the effect of Paraburkholderia phytofirmans PsJN, root-inoculated or directly sprayed on fruiting cuttings inflorescences to control B. cinerea growth. For this purpose, quantification by real time PCR of Botrytis development, direct effect of PsJN on fungal spore germination and chemotaxis were assayed. Our results showed a significant protective effect of PsJN only by direct spraying on inflorescences. Moreover, we demonstrated an inhibition exerted by PsJN on Botrytis spore germination, effective when there was a direct contact between the two microorganisms. This study showed that PsJN is positively attracted by the pathogenic fungus B. cinerea and forms a biofilm around the fungal hyphae in liquid co-culture. Finally, microscopic observations on fruit cuttings revealed a co-localization of both beneficial and pathogenic microorganisms on grapevine receptacle and stigma that might be correlated with the protective effect induced by PsJN against B. cinerea via a direct antimicrobial effect. Taking together, our findings allowed us to propose PsJN as a biofungicide to control grapevine gray mold disease.

7.
Methods Mol Biol ; 2523: 113-131, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35759194

RESUMO

Intracellular bacterial pathogens have evolved a plethora of strategies to invade eukaryotic cells. By manipulating host signaling pathways, in particular vesicular trafficking, these microbes subvert host functions to promote their internalization and to establish an intracellular niche. During these events, host endomembrane compartments are dynamically reorganized. Shigella flexneri, the causative agent of bacillary dysentery, recruits components of the host recycling pathway and the exocyst of non-phagocytic enterocytes in the vicinity of its entry site to facilitate its access to the host cytosol. These factors are either dynamically tethered to in situ formed macropinosomes or to the bacteria-containing vacuole itself. The underlying interactions cannot readily be monitored as individual bacterial infection events take place without synchronicity using cellular infection models. Therefore, time-resolved screens by fluorescence microscopy represent a powerful tool for the study of host subversion. Such screens can be performed with libraries of fluorescently tagged host factors. Using the cytosolic pathogenic agent Shigella flexneri as a model, we provide detailed protocols for such medium-to-high throughput multidimensional imaging screening of the dynamic host-pathogen cross talk. Our workflow is designed to be easily adapted for the study of different host factor libraries and different pathogen models.


Assuntos
Disenteria Bacilar , Vacúolos , Proteínas de Bactérias/metabolismo , Disenteria Bacilar/metabolismo , Disenteria Bacilar/microbiologia , Disenteria Bacilar/patologia , Endossomos/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Microscopia de Fluorescência , Shigella flexneri , Vacúolos/metabolismo
8.
Microorganisms ; 9(7)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34202293

RESUMO

In many vineyards around the world, Botrytis cinerea (B. cinerea) causes one of the most serious diseases of aerial grapevine (Vitis vinifera L.) organs. The control of the disease relies mainly on the use of chemical products whose use is increasingly challenged. To develop new sustainable methods to better resist B. cinerea, beneficial bacteria were isolated from vineyard soil. Once screened based on their antimicrobial effect through an in vivo test, two bacterial strains, S3 and S6, were able to restrict the development of the pathogen and significantly reduced the Botrytis-related necrosis. The photosynthesis analysis showed that the antagonistic strains also prevent grapevines from considerable irreversible PSII photo-inhibition four days after infection with B. cinerea. The 16S rRNA gene sequences of S3 exhibited 100% similarity to Bacillus velezensis, whereas S6 had 98.5% similarity to Enterobacter cloacae. On the other hand, the in silico analysis of the whole genome of isolated strains has revealed the presence of "biocontrol-related" genes supporting their plant growth and biocontrol activities. The study concludes that those bacteria could be potentially useful as a suitable biocontrol agent in harvested grapevine.

9.
Plant Sci ; 307: 110892, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33902853

RESUMO

Roots are prominent plant-microbe interaction sites and of great biological relevance for many studies. The root response is of interest when searching for potential systemic resistance inducers. Screening of elicitors often focuses on the oxidative burst, the rapid and transient production of Reactive Oxygen Species (ROS). However, to our knowledge, no high-throughput, sensitive methods have been developed for the quantification of ROS released by roots. Here, we report on the development of an L-012-based chemiluminescence bioassay to quantitatively determine the oxidative burst following elicitation events in roots. Rice and grapevine were used as monocot and dicot models. We demonstrate that chitosan, a recognized elicitor in rice cells, was able to elicit ROS production in rice roots. Chitosan also triggered a strong oxidative burst in grapevine cell suspension cultures, while grapevine roots were not responsive. Although this method is broadly applicable, the L-012 probe requires careful consideration of solvents and plant species. Insufficient extracellular ROS, quenching, and the interference of solvents with the probe can undermine the assay sensitivity.


Assuntos
Produtos Agrícolas/metabolismo , Oryza/metabolismo , Células Vegetais/metabolismo , Raízes de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Explosão Respiratória/fisiologia , Vitis/metabolismo , Estudos de Avaliação como Assunto , Luminescência
10.
Plant Dis ; 105(2): 384-391, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32734845

RESUMO

Allorhizobium vitis is the primary causal pathogen of grapevine crown gall disease. Because this endophytic bacterium can survive as a systemic latent (symptomless) infection in grapevine, detecting and monitoring its development in planta is of great importance. In plant bacteria studies, plate counting is routinely used as a simple and reliable method to evaluate the bacterial population level in planta. However, isolation techniques are time-consuming and present some disadvantages such as the risk of contamination and the need for fresh samples for research. In this study, we developed a DNA-based real-time PCR assay that can replace the classical method to monitor the development of Allorhizobium vitis in grapevine plantlets. Primers targeting Allorhizobium vitis chromosomic genes and the virulent tumor-inducing plasmid were validated. The proposed quantitative real-time PCR technique is highly reliable and reproducible to assess Allorhizobium vitis numeration at the earliest stage of infection until tumor development in grapevine plantlets. Moreover, this low-cost technique provides rapid and robust in planta quantification of the pathogen and is suitable for fundamental research to monitor bacterial development over time.


Assuntos
Vitis , Agrobacterium/genética , DNA , Reação em Cadeia da Polimerase em Tempo Real
11.
Sci Rep ; 10(1): 19393, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33173115

RESUMO

Plant-associated Burkholderia spp. have been shown to offer a promising alternative method that may address concerns with ecological issue associated with pesticide overuse in agriculture. However to date, little work has studied the role of Burkholderia species as biocontrol agents for grapevine pathogens. To this end, two Burkholderia strains, BE17 and BE24 isolated from the maize rhizosphere in France, were investigated to determine their biocontrol potential and their ability to induce systemic resistance against grey mould disease in grapevine. Results showed the capacity of both strains to inhibit spore germination and mycelium growth of Botrytis cinerea. Experimental inoculation with BE17 and BE24 showed a significant protection of bacterized-plantlets against grey mould compared to the non-bacterized control. BE17 and BE24-bacterized plants accumulated more reactive oxygen species and an increased callose deposition was observed in leaves of bacterized plantlets compared to the control plantlets. In bacterized plants, gene expression analysis subsequent to B. cinerea challenge showed that strains BE17 and BE24 significantly increased the relative transcript level of pathogenesis-related (PR) proteins PR5 and PR10, two markers involved in the Salicylic acid (SA)-signaling pathway. Furthermore, in silico analysis of strains revealed the presence of genes involved in plant growth promotion and biocontrol highlighting the attractiveness of these strains for sustainable agricultural applications.


Assuntos
Botrytis/patogenicidade , Burkholderia/fisiologia , Doenças das Plantas/microbiologia , Vitis/microbiologia , Agentes de Controle Biológico , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/prevenção & controle , Folhas de Planta/microbiologia
12.
Molecules ; 25(14)2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32650401

RESUMO

Natural rhamnolipids are potential biocontrol agents for plant protection against bacterial and fungal diseases. In this work, we synthetized new synthetic mono-rhamnolipids (smRLs) consisting in a rhamnose connected to a simple acyl chain and differing by the nature of the link and the length of the lipid tail. We then investigated the effects of these ether, ester, carbamate or succinate smRL derivatives on Botrytis cinerea development, symptoms spreading on tomato leaves and immune responses in tomato plants. Our results demonstrate that synthetic smRLs are able to trigger early and late immunity-related plant defense responses in tomato and increase plant resistance against B. cinerea in controlled conditions. Structure-function analysis showed that chain length of the lipidic part and type of acyl chain were critical to smRLs immune activity and to the extent of symptoms caused by the fungus on tomato leaves.


Assuntos
Antifúngicos , Botrytis/imunologia , Glicolipídeos , Doenças das Plantas , Imunidade Vegetal/efeitos dos fármacos , Ramnose/análogos & derivados , Solanum lycopersicum , Antifúngicos/síntese química , Antifúngicos/química , Antifúngicos/farmacologia , Glicolipídeos/síntese química , Glicolipídeos/química , Glicolipídeos/farmacologia , Solanum lycopersicum/imunologia , Solanum lycopersicum/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia
13.
Int J Mol Sci ; 20(22)2019 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-31744149

RESUMO

Phenolic compounds are implied in plant-microorganisms interaction and may be induced in response to plant growth-promoting rhizobacteria (PGPRs). Among PGPR, the beneficial bacterium Paraburkholderia phytofirmans PsJN was previously described to stimulate the growth of plants and to induce a better adaptation to both abiotic and biotic stresses. This study aimed to investigate the impact of PsJN on grapevine secondary metabolism. For this purpose, gene expression (qRT-PCR) and profiling of plant secondary metabolites (UHPLC-UV/DAD-MS QTOF) from both grapevine root and leaves were compared between non-bacterized and PsJN-bacterized grapevine plantlets. Our results showed that PsJN induced locally (roots) and systemically (leaves) an overexpression of PAL and STS and specifically in leaves the overexpression of all the genes implied in phenylpropanoid and flavonoid pathways. Moreover, the metabolomic approach revealed that relative amounts of 32 and 17 compounds in roots and leaves, respectively, were significantly modified by PsJN. Once identified to be accumulated in response to PsJN by the metabolomic approach, antifungal properties of purified molecules were validated in vitro for their antifungal effect on Botrytis cinerea spore germination. Taking together, our findings on the impact of PsJN on phenolic metabolism allowed us to identify a supplementary biocontrol mechanism developed by this PGPR to induce plant resistance against pathogens.


Assuntos
Burkholderiaceae/fisiologia , Polifenóis/metabolismo , Vitis/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo , Antifúngicos/química , Antifúngicos/farmacologia , Botrytis/fisiologia , Cromatografia Líquida de Alta Pressão , Análise Discriminante , Flavonoides/análise , Flavonoides/metabolismo , Flavonoides/farmacologia , Regulação da Expressão Gênica de Plantas , Espectrometria de Massas , Metaboloma , Fenilalanina Amônia-Liase/genética , Fenilalanina Amônia-Liase/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Polifenóis/análise , Polifenóis/farmacologia , Análise de Componente Principal , Esporos Fúngicos/efeitos dos fármacos , Vitis/química , Vitis/crescimento & desenvolvimento
14.
Appl Environ Microbiol ; 85(11)2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30902863

RESUMO

Members of the genus Burkholderia colonize diverse ecological niches. Among the plant-associated strains, Paraburkholderia phytofirmans PsJN is an endophyte with a broad host range. In a spatially structured environment (unshaken broth cultures), biofilm-constructing specialists of P. phytofirmans PsJN colonizing the air-liquid interface arose at high frequency. In addition to forming a robust biofilm in vitro and in planta on Arabidopsis roots, those mucoid phenotypic variants display a reduced swimming ability and modulate the expression of several microbe-associated molecular patterns (MAMPs), including exopolysaccharides (EPS), flagellin, and GroEL. Interestingly, the variants induce low PR1 and PDF1.2 expression compared to that of the parental strain, suggesting a possible evasion of plant host immunity. We further demonstrated that switching from the planktonic to the sessile form did not involve quorum-sensing genes but arose from spontaneous mutations in two genes belonging to an iron-sulfur cluster: hscA (encoding a cochaperone protein) and iscS (encoding a cysteine desulfurase). A mutational approach validated the implication of these two genes in the appearance of variants. We showed for the first time that in a heterogeneous environment, P. phytofirmans strain PsJN is able to rapidly diversify and coexpress a variant that outcompete the wild-type form in free-living and static conditions but not in plantaIMPORTANCEParaburkholderia phytofirmans strain PsJN is a well-studied plant-associated bacterium known to induce resistance against biotic and abiotic stresses. In this work, we described the spontaneous appearance of mucoid variants in PsJN from static cultures. We showed that the conversion from the wild-type (WT) form to variants (V) correlates with an overproduction of EPS, an enhanced ability to form biofilm in vitro and in planta, and a reduced swimming motility. Our results revealed also that these phenotypes are in part associated with spontaneous mutations in an iron-sulfur cluster. Overall, the data provided here allow a better understanding of the adaptive mechanisms likely developed by P. phytofirmans PsJN in a heterogeneous environment.


Assuntos
Biofilmes/crescimento & desenvolvimento , Burkholderiaceae/metabolismo , Arabidopsis/microbiologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Bactérias/genética , Burkholderiaceae/citologia , Burkholderiaceae/genética , Burkholderiaceae/crescimento & desenvolvimento , Liases de Carbono-Enxofre , Defensinas/metabolismo , Proteínas de Choque Térmico HSP70/genética , Mutação , Imunidade Vegetal , Raízes de Plantas/microbiologia , Percepção de Quorum/genética , Estresse Fisiológico , Sequenciamento Completo do Genoma
15.
World J Microbiol Biotechnol ; 35(3): 40, 2019 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-30739227

RESUMO

Grey mould caused by Botrytis cinerea is among the most important disease affecting the production of grapevine worldwide. The high economical loss each year has led producers to become more dependent on chemical pesticides for protection. However, environmental impacts of the pesticides overuse have sparked crescent interest in developing alternative biocontrol methods. The use of plant-associated bacteria has, thus, received many attentions as a promising strategy for sustainable agriculture. Three strains, isolated from the rhizosphere of crops cultivated in the northeast of France, were evaluated for their antagonistic effect. They were found to exhibit an antagonistic effect against a set of phytopathogenic fungi. Phenotypic and molecular characterization showed that isolates belong to the genus Burkholderia. The genome sequencing and analysis of isolated strains revealed the presence of gene clusters coding for secondary metabolites potentially involved in the biocontrol. When the grapevine plantlets were infected with B. cinerea, all plants associated with isolated strains showed a significant protection against B. cinerea compared to non-inoculated plants. To understand the mechanisms contributing to the biocontrol effect of selected isolates, the production of reactive oxygen species (ROS) and the expression of several defense genes were investigated. The maximum accumulation of H2O2 was detected in the inoculated cell suspension medium 30 min after the challenge with B. cinerea. After pathogen challenge, results showed that grapevine cell culture inoculated with isolated strains exhibited significant over expression of defense markers genes PR5, PR10, and chit4c, in response to B. cinerea, confirming their priming effect.


Assuntos
Antibiose/genética , Agentes de Controle Biológico/farmacologia , Botrytis/efeitos dos fármacos , Burkholderia/genética , Burkholderia/metabolismo , Doenças das Plantas/prevenção & controle , Vitis/microbiologia , Antibiose/fisiologia , Agentes de Controle Biológico/isolamento & purificação , Botrytis/crescimento & desenvolvimento , Botrytis/patogenicidade , Burkholderia/classificação , Burkholderia/isolamento & purificação , Produtos Agrícolas/microbiologia , França , Regulação Bacteriana da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes Bacterianos/genética , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Família Multigênica , Fosfatos/metabolismo , Filogenia , Doenças das Plantas/microbiologia , RNA Ribossômico 16S/genética , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/farmacologia , Rizosfera , Metabolismo Secundário/genética , Sideróforos/metabolismo , Microbiologia do Solo , Vitis/genética , Vitis/metabolismo , Sequenciamento Completo do Genoma
16.
Artigo em Inglês | MEDLINE | ID: mdl-30533687

RESUMO

Burkholderia reimsis BE51, isolated from maize rhizosphere, has a promising biocontrol activity against a set of phytopathogens. Here, we report its draft genome sequence with the aim of providing insight into the potentially produced secondary metabolites and genes related to plant growth-promoting and biocontrol properties.

17.
Front Plant Sci ; 9: 1397, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30405648

RESUMO

Abnormal temperatures induce physiological and biochemical changes resulting in the loss of yield. The present study investigates the impact of the PsJN strain of Paraburkholderia phytofirmans on tomato (Lycopersicon esculentum Mill.) in response to heat stress (32°C). The results of this work showed that bacterial inoculation with P. phytofirmans strain PsJN increased tomato growth parameters such as chlorophyll content and gas exchange at both normal and high temperatures (25 and 32°C). At normal temperature (25°C), the rate of photosynthesis and the photosystem II activity increased with significant accumulations of sugars, total amino acids, proline, and malate in the bacterized tomato plants, demonstrating that the PsJN strain had a positive effect on plant growth. However, the amount of sucrose, total amino acids, proline, and malate were significantly affected in tomato leaves at 32°C compared to that at 25°C. Changes in photosynthesis and chlorophyll fluorescence showed that the bacterized tomato plants were well acclimated at 32°C. These results reinforce the current knowledge about the PsJN strain of P. phytofirmans and highlight in particular its ability to alleviate the harmful effects of high temperatures by stimulating the growth and tolerance of tomato plants.

18.
Front Microbiol ; 9: 2093, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30214441

RESUMO

The use of plant-associated bacteria has received many scientific and economic attention as an effective and alternative method to reduce the chemical pesticides use in agriculture. The genus Burkholderia includes at least 90 species including pathogenic strains, plant pathogens, as well as plant beneficial species as those related to Paraburkholderia, which has been reported to be associated with plants and exerts a positive effect on plant growth and fitness. Paraburkholderia phytofirmans PsJN, a beneficial endophyte able to colonize a wide range of plants, is an established model for plant-associated endophytic bacteria. Indeed, in addition to its plant growth promoting ability, it can also induce plant resistance against biotic as well as abiotic stresses. Here, we summarized an inventory of knowledge on PsJN-plant interaction, from the perception to the resistance mechanisms induced in the plant by a way of the atypical colonization mode of this endophyte. We also have carried out an extensive genome analysis to identify all gene clusters which contribute to the adaptive mechanisms under different environments and partly explaining the high ecological competence of P. phytofirmans PsJN.

19.
J Appl Microbiol ; 2018 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-30142236

RESUMO

AIMS: The study aimed for evaluate the efficacy of Pseudomonas knackmussii MLR6 on growth promotion, photosynthetic responses, pigment contents and gene expression of the plant model Arabidopsis thaliana under NaCl stress. METHODS AND RESULTS: The strain MLR6 was isolated from the rhizopshere of the halophyte Salsola tetrandra collected from a natural saline Algerian soil. Results showed the ability of MLR6 to induce plant growth promoting traits even under NaCl stress. The inoculation with MLR6 improved the stomatal conductance, the transpiration rate, the total chlorophyll and carotenoids contents under salt stress. It conferred also an increase of fresh/dry weight as well as plant height. MLR6 inoculation further provided a positive effect on cell membrane stability by reducing the electrolyte leakage and priming the ROS accumulation after the salt exposition. Additionally, the expression of NHX1, HKT1, SOS2, and SOS3 as well as SAG13 and PR1 was maintained in MLR6-bacterized plant at a similar level of controls. CONCLUSIONS: The inoculation of Arabidopsis thaliana with MLR6 improves plant growth and reduces damages caused by salt stress. SIGNIFICANCE AND IMPACT OF STUDY: The use of Pseudomonas knackmussii MLR6 appears as a promising strategy to improve the sustainable agriculture under saline conditions. This article is protected by copyright. All rights reserved.

20.
Genome Announc ; 6(17)2018 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-29700147

RESUMO

Burkholderia sp. strain BE12, isolated from a French agricultural soil, possesses antifungal activity against a set of phytopathogenic fungi and has friendly interactions with grapevine. Here, we present the draft genome sequence of BE12, along with genes related to plant growth-promoting traits and siderophores that this strain contains, supporting its plant growth and antifungal activities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA