Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 81(5): 1792-800, 2009 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-19175329

RESUMO

Vertical and horizontal profiles of atmospheric aerosols are necessary for understanding the impact of air pollution on regional and global climate. To gain further insight into the size-resolved chemistry of individual atmospheric particles, a smaller aerosol time-of-flight mass spectrometer (ATOFMS) with increased data acquisition capabilities was developed for aircraft-based studies. Compared to previous ATOFMS systems, the new instrument has a faster data acquisition rate with improved ion transmission and mass resolution, as well as reduced physical size and power consumption, all required advances for use in aircraft studies. In addition, real-time source apportionment software allows the immediate identification and classification of individual particles to guide sampling decisions while in the field. The aircraft (A)-ATOFMS was field-tested on the ground during the Study of Organic Aerosols in Riverside, CA (SOAR) and aboard an aircraft during the Ice in Clouds Experiment-Layer Clouds (ICE-L). Initial results from ICE-L represent the first reported aircraft-based single-particle dual-polarity mass spectrometry measurements and provide an increased understanding of particle mixing state as a function of altitude. Improved ion transmission allows for the first single-particle detection of species out to approximately m/z 2000, an important mass range for the detection of biological aerosols and oligomeric species. In addition, high time resolution measurements of single-particle mixing state are demonstrated and shown to be important for airborne studies where particle concentrations and chemistry vary rapidly.

2.
J Neurochem ; 87(1): 101-6, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12969257

RESUMO

Huntington's disease (HD) is caused by a mutation in the gene encoding for huntingtin resulting in selective neuronal degeneration. Because HD is an autosomal dominant disorder, affected individuals have one copy of the mutant and one copy of the wild-type allele. Huntingtin has antiapoptotic properties and is critical for cell survival. However, the important role of wild-type huntingtin in both HD and other neurological diseases has not been fully recognized. We demonstrate disease-associated decreased levels of full-length huntingtin in brains of transgenic mouse models of HD, ischemia, trauma, and in spinal cord after injury. In addition, overexpression of wild-type huntingtin confers in vivo protection of neurodegeneration after ischemia. We propose that in HD, in addition to a toxic gain-of-function of mutant huntingtin, a parallel depletion of wild-type huntingtin results in a detrimental loss-of-function, playing an important role in disease progression.


Assuntos
Lesões Encefálicas/metabolismo , Isquemia Encefálica/metabolismo , Doença de Huntington/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Traumatismos da Medula Espinal/metabolismo , Animais , Química Encefálica , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Caspases/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Humanos , Proteína Huntingtina , Doença de Huntington/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA