Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Circulation ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39087344

RESUMO

BACKGROUND: Exposure to metals has been associated with cardiovascular disease (CVD) end points and mortality, yet prospective evidence is limited beyond arsenic, cadmium, and lead. In this study, we assessed the prospective association of urinary metals with incident CVD and all-cause mortality in a racially diverse population of US adults from MESA (Multi-Ethnic Study of Atherosclerosis). METHODS: We included 6599 participants (mean [SD] age, 62.1 [10.2] years; 53% female) with urinary metals available at baseline (2000 to 2001) and followed through December 2019. We used Cox proportional hazards models to estimate the adjusted hazard ratio and 95% CI of CVD and all-cause mortality by baseline urinary levels of cadmium, tungsten, and uranium (nonessential metals), and cobalt, copper, and zinc (essential metals). The joint association of the 6 metals as mixture and the corresponding 10-year survival probability was calculated using Cox Elastic-Net. RESULTS: During follow-up, 1162 participants developed CVD, and 1844 participants died. In models adjusted by behavioral and clinical indicators, the HR (95% CI) for incident CVD and all-cause mortality comparing the highest with the lowest quartile were, respectively: 1.25 (1.03, 1.53) and 1.68 (1.43, 1.96) for cadmium; 1.20 (1.01, 1.42) and 1.16 (1.01, 1.33) for tungsten; 1.32 (1.08, 1.62) and 1.32 (1.12, 1.56) for uranium; 1.24 (1.03, 1.48) and 1.37 (1.19, 1.58) for cobalt; 1.42 (1.18, 1.70) and 1.50 (1.29, 1.74) for copper; and 1.21 (1.01, 1.45) and 1.38 (1.20, 1.59) for zinc. A positive linear dose-response was identified for cadmium and copper with both end points. The adjusted HRs (95% CI) for an interquartile range (IQR) increase in the mixture of these 6 urinary metals and the corresponding 10-year survival probability difference (95% CI) were 1.29 (1.11, 1.56) and -1.1% (-2.0, -0.05) for incident CVD and 1.66 (1.47, 1.91) and -2.0% (-2.6, -1.5) for all-cause mortality. CONCLUSIONS: This epidemiological study in US adults indicates that urinary metal levels are associated with increased CVD risk and mortality. These findings can inform the development of novel preventive strategies to improve cardiovascular health.

2.
PLoS One ; 19(7): e0304447, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38990886

RESUMO

Urban street trees offer cities critical environmental and social benefits. In New York City (NYC), a decadal census of every street tree is conducted to help understand and manage the urban forest. However, it has previously been impossible to analyze growth of an individual tree because of uncertainty in tree location. This study overcomes this limitation using a three-step alignment process for identifying individual trees with ZIP Codes, address, and species instead of map coordinates. We estimated individual growth rates for 126,362 street trees (59 species and 19% of 2015 trees) using the difference between diameter at breast height (DBH) from the 2005 and 2015 tree censuses. The tree identification method was verified by locating and measuring the DBH of select trees and measuring a set of trees annually for over 5 years. We examined determinants of tree growth rates and explored their spatial distribution. In our newly created NYC tree growth database, fourteen species have over 1000 unique trees. The three most abundant tree species vary in growth rates; London Planetree (n = 32,056, 0.163 in/yr) grew the slowest compared to Honeylocust (n = 15,967, 0.356 in/yr), and Callery Pear (n = 15,902, 0.334 in/yr). Overall, Silver Linden was the fastest growing species (n = 1,149, 0.510 in/yr). Ordinary least squares regression that incorporated biological factors including size and the local urban form indicated that species was the major factor controlling growth rates, and tree stewardship had only a small effect. Furthermore, tree measurements by volunteer community scientists were as accurate as those made by NYC staff. Examining city wide patterns of tree growth indicates that areas with a higher Social Vulnerability Index have higher than expected growth rates. Continued efforts in street tree planting should utilize known growth rates while incorporating community voices to better provide long-term ecosystem services across NYC.


Assuntos
Cidades , Árvores , Árvores/crescimento & desenvolvimento , Cidade de Nova Iorque , Florestas
3.
Artigo em Inglês | MEDLINE | ID: mdl-39003368

RESUMO

BACKGROUND: Pollutants including metals/metalloids, nitrate, disinfection byproducts, and volatile organic compounds contaminate federally regulated community water systems (CWS) and unregulated domestic wells across the United States. Exposures and associated health effects, particularly at levels below regulatory limits, are understudied. OBJECTIVE: We described drinking water sources and exposures for the California Teachers Study (CTS), a prospective cohort of female California teachers and administrators. METHODS: Participants' geocoded addresses at enrollment (1995-1996) were linked to CWS service area boundaries and monitoring data (N = 115,206, 92%); we computed average (1990-2015) concentrations of arsenic, uranium, nitrate, gross alpha (GA), five haloacetic acids (HAA5), total trihalomethanes (TTHM), trichloroethylene (TCE), and tetrachloroethylene (PCE). We used generalized linear regression to estimate geometric mean ratios of CWS exposures across demographic subgroups and neighborhood characteristics. Self-reported drinking water source and consumption at follow-up (2017-2019) were also described. RESULTS: Medians (interquartile ranges) of average concentrations of all contaminants were below regulatory limits: arsenic: 1.03 (0.54,1.71) µg/L, uranium: 3.48 (1.01,6.18) µg/L, GA: 2.21 (1.32,3.67) pCi/L, nitrate: 0.54 (0.20,1.97) mg/L, HAA5: 8.67 (2.98,14.70) µg/L, and TTHM: 12.86 (4.58,21.95) µg/L. Among those who lived within a CWS boundary and self-reported drinking water information (2017-2019), approximately 74% self-reported their water source as municipal, 15% bottled, 2% private well, 4% other, and 5% did not know/missing. Spatially linked water source was largely consistent with self-reported source at follow-up (2017-2019). Relative to non-Hispanic white participants, average arsenic, uranium, GA, and nitrate concentrations were higher for Black, Hispanic and Native American participants. Relative to participants living in census block groups in the lowest socioeconomic status (SES) quartile, participants in higher SES quartiles had lower arsenic/uranium/GA/nitrate, and higher HAA5/TTHM. Non-metropolitan participants had higher arsenic/uranium/nitrate, and metropolitan participants had higher HAA5/TTHM. IMPACT: Though average water contaminant levels were mostly below regulatory limits in this large cohort of California women, we observed heterogeneity in exposures across sociodemographic subgroups and neighborhood characteristics. These data will be used to support future assessments of drinking water exposures and disease risk.

4.
Thorax ; 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39033027

RESUMO

INTRODUCTION: Cigarette smoking leads to altered DNA methylation at the aryl-hydrocarbon receptor repressor (AHRR) gene. However, it remains unknown whether pipe or cigar smoking is associated with AHRR methylation. We evaluated associations of non-cigarette tobacco use with AHRR methylation and determined if AHRR methylation was associated with smoking-related health outcomes. METHODS: Data were pooled across four population-based cohorts that enrolled participants from 1985 to 2002. Tobacco exposures were evaluated using smoking questionnaires. AHRR cg05575921 methylation was measured in peripheral blood leucocyte DNA. Spirometry and respiratory symptoms were evaluated at the time of methylation measurements and in subsequent visits. Vital status was monitored using the National Death Index. RESULTS: Among 8252 adults (mean age 56.7±10.3 years, 58.1% women, 40.6% black), 4857 (58.9%) participants used cigarettes and 634 (7.7%) used non-cigarette tobacco products. Exclusive use of non-cigarette tobacco products was independently associated with lower AHRR methylation (-2.44 units, 95% CI -4.42 to -0.45), though to a lesser extent than exclusive use of cigarettes (-6.01 units, 95% CI -6.01 to -4.10). Among participants who exclusively used non-cigarette tobacco products, reduced AHRR methylation was associated with increased respiratory symptom burden (OR 1.60, 95% CI 1.03 to 2.68) and higher all-cause mortality (log-rank p=0.02). CONCLUSION: Pipe and cigar smoking were independently associated with lower AHRR methylation in a multiethnic cohort of US adults. Among users of non-cigarette tobacco products, lower AHRR methylation was associated with poor respiratory health outcomes and increased mortality. AHRR methylation may identify non-cigarette tobacco users with an increased risk of adverse smoking-related health outcomes.

5.
medRxiv ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39072015

RESUMO

Background: Volatile organic compounds (VOCs) are ubiquitous environmental pollutants. Exposure to VOCs is associated with cardiovascular disease (CVD) risk factors, including elevated blood pressure (BP) in susceptible populations. However, research in the general population, particularly among non-smoking adults, is limited. We hypothesized that higher VOC exposure is associated with higher BP and hypertension, among non-smokers. Methods: We included four cycles of data (2011-2018) of non-smoking adults (n=4,430) from the National Health and Nutrition Examination Survey (NHANES). Urinary VOC metabolites were measured by ultra-performance liquid chromatography-mass spectrometry, adjusted for urine dilution, and log-transformed. We estimated mean differences in BP using linear models and prevalence ratio of stage 2 hypertension using modified Poisson models with robust standard errors. Models were adjusted for age, sex, race and ethnicity, education, body mass index, estimated glomerular filtration rate and NHANES cycle. Results: Participants were 54% female, with a median age of 48 years, 32.3% had hypertension, and 7.9% had diabetes. The mean differences (95% CI) in systolic BP were 1.61 (0.07, 3.15) and 2.46 (1.01, 3.92) mmHg when comparing the highest to lowest quartile of urinary acrolein (CEMA) and 1,3-butadiene (DHBMA) metabolites. The prevalence ratios (PR) for hypertension were 1.06 (1.02, 1.09) and 1.05 (1.01, 1.09) when comparing the highest to lowest quartiles of urinary acrolein (CEMA) and 1,3-butadiene (DHBMA), respectively. Conclusions: Exposure to VOCs may be relevant yet understudied environmental contributors to CVD risk in the non-smoking, US population.

6.
Artigo em Inglês | MEDLINE | ID: mdl-38448681

RESUMO

Environmental epidemiologic studies using geospatial data often estimate exposure at a participant's residence upon enrollment, but mobility during the exposure period can lead to misclassification. We aimed to mitigate this issue by constructing residential histories for participants in the California Teachers Study through follow-up (1995-2018). Address records have been collected from the US Postal Service, LexisNexis, Experian, and California Cancer Registry. We identified records of the same address based on geo-coordinate distance (≤250 m) and street name similarity. We consolidated addresses, prioritizing those confirmed by participants during follow-up questionnaires, and estimating the duration lived at each address using dates associated with records (e.g., date-first-seen). During 23 years of follow-up, about half of participants moved (48%, including 14% out-of-state). We observed greater mobility among younger women, Hispanic/Latino women, and those in metropolitan and lower socioeconomic status areas. The cumulative proportion of in-state movers remaining eligible for analysis was 21%, 32%, and 41% at 5, 10, and 20 years post enrollment, respectively. Using self-reported information collected 10 years after enrollment, we correctly identified 94% of movers and 95% of non-movers as having moved or not moved from their enrollment address. This dataset provides a foundation for estimating long-term environmental exposures in diverse epidemiologic studies in this cohort. IMPACT: Our efforts in constructing residential histories for California Teachers Study participants through follow-up (1995-2018) benefit future environmental epidemiologic studies. Address availability during the exposure period can mitigate misclassification due to residential changes, especially when evaluating long-term exposures and chronic health outcomes. This can reduce differential misclassification among more mobile subgroups, including younger women and those from lower socioeconomic and urban areas. Our approach to consolidating addresses from multiple sources showed high accuracy in comparison to self-reported residential information. The residential dataset produced from this analysis provides a valuable tool for future studies, ultimately enhancing our understanding of environmental health impacts.

7.
J Expo Sci Environ Epidemiol ; 34(1): 77-89, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37558699

RESUMO

BACKGROUND: Chronic exposure to inorganic arsenic (As) and uranium (U) in the United States (US) occurs from unregulated private wells and federally regulated community water systems (CWSs). The contribution of water to total exposure is assumed to be low when water As and U concentrations are low. OBJECTIVE: We examined the contribution of water As and U to urinary biomarkers in the Strong Heart Family Study (SHFS), a prospective study of American Indian communities, and the Multi-Ethnic Study of Atherosclerosis (MESA), a prospective study of racially/ethnically diverse urban U.S. communities. METHODS: We assigned residential zip code-level estimates in CWSs (µg/L) and private wells (90th percentile probability of As >10 µg/L) to up to 1485 and 6722 participants with dietary information and urinary biomarkers in the SHFS (2001-2003) and MESA (2000-2002; 2010-2011), respectively. Urine As was estimated as the sum of inorganic and methylated species, and urine U was total uranium. We used linear mixed-effects models to account for participant clustering and removed the effect of dietary sources via regression adjustment. RESULTS: The median (interquartile range) urine As was 5.32 (3.29, 8.53) and 6.32 (3.34, 12.48) µg/L for SHFS and MESA, respectively, and urine U was 0.037 (0.014, 0.071) and 0.007 (0.003, 0.018) µg/L. In a meta-analysis across both studies, urine As was 11% (95% CI: 3, 20%) higher and urine U was 35% (5, 73%) higher per twofold higher CWS As and U, respectively. In the SHFS, zip-code level factors such as private well and CWS As contributed 46% of variation in urine As, while in MESA, zip-code level factors, e.g., CWS As and U, contribute 30 and 49% of variation in urine As and U, respectively. IMPACT STATEMENT: We found that water from unregulated private wells and regulated CWSs is a major contributor to urinary As and U (an estimated measure of internal dose) in both rural, American Indian populations and urban, racially/ethnically diverse populations nationwide, even at levels below the current regulatory standard. Our findings indicate that additional drinking water interventions, regulations, and policies can have a major impact on reducing total exposures to As and U, which are linked to adverse health effects even at low levels.


Assuntos
Arsênio , Aterosclerose , Urânio , Adulto , Humanos , Água , Estudos Prospectivos , Biomarcadores
8.
Anal Methods ; 16(2): 214-226, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38099473

RESUMO

Analysis of essential and non-essential trace elements in urine has emerged as a valuable tool for assessing occupational and environmental exposures, diagnosing nutritional status and guiding public health and health care intervention. Our study focused on the analysis of trace elements in urine samples from the Multi-Ethnic Study of Atherosclerosis (MESA), a precious resource for health research with limited sample volumes. Here we provide a comprehensive and sensitive method for the analysis of 18 elements using only 100 µL of urine. Method sensitivity, accuracy, and precision were assessed. The analysis by inductively coupled plasma mass spectrometry (ICP-MS) included the measurement of antimony (Sb), arsenic (As), barium (Ba), cadmium (Cd), cesium (Cs), cobalt (Co), copper (Cu), gadolinium (Gd), lead (Pb), manganese (Mn), molybdenum (Mo), nickel (Ni), selenium (Se), strontium (Sr), thallium (Tl), tungsten (W), uranium (U), and zinc (Zn). Further, we reported urinary trace element concentrations by covariates including gender, ethnicity/race, smoking and location. The results showed good accuracy and sensitivity of the ICP-MS method with the limit of detections rangings between 0.001 µg L-1 for U to 6.2 µg L-1 for Zn. Intra-day precision for MESA urine analysis varied between 1.4% for Mo and 26% for Mn (average 6.4% for all elements). The average inter-day precision for most elements was <8.5% except for Gd (20%), U (16%) and Mn (19%) due to very low urinary concentrations. Urinary mean concentrations of non-essential elements followed the order of Sr > As > Cs > Ni > Ba > Pb > Cd > Gd > Tl > W > U. The order of urinary mean concentrations for essential trace elements was Zn > Se > Mo > Cu > Co > Mn. Non-adjusted mean concentration of non-essential trace elements in urine from MESA participants follow the order Sr > As > Cs > Ni > Ba > Pb > Cd > Gd > Tl > W > U. The unadjusted urinary mean concentrations of essential trace elements decrease from Zn > Se > Mo > Cu > Co > Mn.


Assuntos
Arsênio , Selênio , Oligoelementos , Humanos , Oligoelementos/urina , Cádmio , Chumbo , Manganês/urina , Arsênio/urina , Níquel , Zinco , Estudos Epidemiológicos , Molibdênio , Cobalto
9.
medRxiv ; 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37961623

RESUMO

Objective: Growing evidence indicates that exposure to metals are risk factors for cardiovascular disease (CVD). We hypothesized that higher urinary levels of metals with prior evidence of an association with CVD, including non-essential (cadmium , tungsten, and uranium) and essential (cobalt, copper, and zinc) metals are associated with baseline and rate of change of coronary artery calcium (CAC) progression, a subclinical marker of atherosclerotic CVD. Methods: We analyzed data from 6,418 participants in the Multi-Ethnic Study of Atherosclerosis (MESA) with spot urinary metal levels at baseline (2000-2002) and 1-4 repeated measures of spatially weighted coronary calcium score (SWCS) over a ten-year period. SWCS is a unitless measure of CAC highly correlated to the Agatston score but with numerical values assigned to individuals with Agatston score=0. We used linear mixed effect models to assess the association of baseline urinary metal levels with baseline SWCS, annual change in SWCS, and SWCS over ten years of follow-up. Urinary metals (adjusted to µg/g creatinine) and SWCS were log transformed. Models were progressively adjusted for baseline sociodemographic factors, estimated glomerular filtration rate, lifestyle factors, and clinical factors. Results: At baseline, the median and interquartile range (25th, 75th) of SWCS was 6.3 (0.7, 58.2). For urinary cadmium, the fully adjusted geometric mean ratio (GMR) (95%Cl) of SWCS comparing the highest to the lowest quartile was 1.51 (1.32, 1.74) at baseline and 1.75 (1.47, 2.07) at ten years of follow-up. For urinary tungsten, uranium, and cobalt the corresponding GMRs at ten years of follow-up were 1.45 (1.23, 1.71), 1.39 (1.17, 1.64), and 1.47 (1.25, 1.74), respectively. For copper and zinc, the association was attenuated with adjustment for clinical risk factors; GMRs at ten years of follow-up before and after adjustment for clinical risk factors were 1.55 (1.30, 1.84) and 1.33 (1.12, 1.58), respectively, for copper and 1.85 (1.56, 2.19) and 1.57 (1.33, 1.85) for zinc. Conclusion: Higher levels of cadmium, tungsten, uranium, cobalt, copper, and zinc, as measured in urine, were associated with subclinical CVD at baseline and at follow-up. These findings support the hypothesis that metals are pro-atherogenic factors.

10.
Environ Health Perspect ; 131(8): 87019, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37646523

RESUMO

BACKGROUND: Marijuana is the third most used drug in the world. OBJECTIVES: Because the cannabis plant is a known scavenger of metals, we hypothesized that individuals who use marijuana will have higher metal biomarker levels compared with those who do not use. METHODS: We combined data from the National Health and Nutrition Examination Survey (2005-2018) for n=7,254 participants, classified by use: non-marijuana/non-tobacco, exclusive marijuana, exclusive tobacco, and dual marijuana and tobacco use. Five metals were measured in blood and 16 in urine using inductively coupled plasma mass spectrometry; urinary metals were adjusted for urinary creatinine. RESULTS: Participants reporting exclusive marijuana use compared with non-marijuana/non-tobacco use had statistically significantly higher mean cadmium levels in blood [1.22µg/L (95% CI: 1.11, 1.34); p<0.001] and urine [1.18µg/g (95% CI: 1.0, 1.31); p=0.004] and statistically significantly higher mean lead levels in blood [1.27µg/dL (95% CI: 1.07, 1.50); p=0.006] and urine [1.21µg/g (95% CI: -0.006, 1.50); p=0.058]. DISCUSSION: Our results suggest marijuana is a source of cadmium and lead exposure. Research regarding cannabis use and cannabis contaminants, particularly metals, should be conducted to address public health concerns related to the growing number of cannabis users. https://doi.org/10.1289/EHP12074.


Assuntos
Cádmio , Cannabis , Humanos , Inquéritos Nutricionais , Chumbo , Saúde Pública
11.
Curr Environ Health Rep ; 10(3): 215-249, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37337116

RESUMO

PURPOSE OF REVIEW: Biomarkers are commonly used in epidemiological studies to assess metals and metalloid exposure and estimate internal dose, as they integrate multiple sources and routes of exposure. Researchers are increasingly using multi-metal panels and innovative statistical methods to understand how exposure to real-world metal mixtures affects human health. Metals have both common and unique sources and routes of exposure, as well as biotransformation and elimination pathways. The development of multi-element analytical technology allows researchers to examine a broad spectrum of metals in their studies; however, their interpretation is complex as they can reflect different windows of exposure and several biomarkers have critical limitations. This review elaborates on more than 500 scientific publications to discuss major sources of exposure, biotransformation and elimination, and biomarkers of exposure and internal dose for 12 metals/metalloids, including 8 non-essential elements (arsenic, barium, cadmium, lead, mercury, nickel, tin, uranium) and 4 essential elements (manganese, molybdenum, selenium, and zinc) commonly used in multi-element analyses. RECENT FINDINGS: We conclude that not all metal biomarkers are adequate measures of exposure and that understanding the metabolic biotransformation and elimination of metals is key to metal biomarker interpretation. For example, whole blood is a good biomarker of exposure to arsenic, cadmium, lead, mercury, and tin, but it is not a good indicator for barium, nickel, and uranium. For some essential metals, the interpretation of whole blood biomarkers is unclear. Urine is the most commonly used biomarker of exposure across metals but it should not be used to assess lead exposure. Essential metals such as zinc and manganese are tightly regulated by homeostatic processes; thus, elevated levels in urine may reflect body loss and metabolic processes rather than excess exposure. Total urinary arsenic may reflect exposure to both organic and inorganic arsenic, thus, arsenic speciation and adjustment for arsebonetaine are needed in populations with dietary seafood consumption. Hair and nails primarily reflect exposure to organic mercury, except in populations exposed to high levels of inorganic mercury such as in occupational and environmental settings. When selecting biomarkers, it is also critical to consider the exposure window of interest. Most populations are chronically exposed to metals in the low-to-moderate range, yet many biomarkers reflect recent exposures. Toenails are emerging biomarkers in this regard. They are reliable biomarkers of long-term exposure for arsenic, mercury, manganese, and selenium. However, more research is needed to understand the role of nails as a biomarker of exposure to other metals. Similarly, teeth are increasingly used to assess lifelong exposures to several essential and non-essential metals such as lead, including during the prenatal window. As metals epidemiology moves towards embracing a multi-metal/mixtures approach and expanding metal panels to include less commonly studied metals, it is important for researchers to have a strong knowledge base about the metal biomarkers included in their research. This review aims to aid metals researchers in their analysis planning, facilitate sound analytical decision-making, as well as appropriate understanding and interpretation of results.


Assuntos
Arsênio , Mercúrio , Selênio , Urânio , Gravidez , Feminino , Humanos , Cádmio , Manganês , Níquel , Bário , Estanho , Zinco , Biomarcadores
12.
Environ Res ; 213: 113647, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35691383

RESUMO

BACKGROUND & AIMS: Chronic liver disease is a growing health burden worldwide. Chronic metal exposures may be associated with non-alcoholic fatty liver disease (NAFLD). We aimed to evaluate the association of blood cadmium (Cd), mercury (Hg), lead (Pb), manganese (Mn), and selenium (Se) with two hallmark features of NAFLD: liver steatosis and fibrosis in the general U.S. METHODS: We analyzed transient liver elastography data from participants of the National Health and Nutrition Examination Survey (NHANES) 2017-18, using ordinal logistic regression analyses to evaluate the cross-sectional association between blood metal concentrations and clinical stages of steatosis and fibrosis. We applied survey weights, strata, and primary sampling units and analyses were conducted using the R survey package. RESULTS: 4,154 participants were included. Median (IQR) for blood Mn and blood Se were 9.28 (7.48-11.39) and 191.08 (176.55-207.16) µg/L, respectively. Per interquartile range increase of natural log transformed blood Mn, the adjusted odds ratio (OR) (95% CI) was 1.59 (1.13-2.23) for a higher grade of steatosis and 1.16 (0.67-2.00) for liver fibrosis. The corresponding OR for steatosis was 2.00 (1.24-3.24) and 2.14 (1.04-4.42) in Black and Mexican American participants, respectively. The corresponding OR for liver fibrosis was 2.96 (1.42-6.17) for females. Per interquartile range increase of natural log transformed blood Se, the adjusted OR was 2.25 (1.30-3.89) for steatosis but 0.31 (0.13-0.72) for liver fibrosis. The inverse association of blood Se with liver fibrosis was also observed in males and White participants. Blood Cd, Hg, and Pb were not associated with liver steatosis and fibrosis in fully-adjusted models overall. CONCLUSIONS: In NHANES 2017-18, higher blood Mn was positively associated with liver steatosis, and higher Se was positively associated with liver steatosis but negatively associated with liver fibrosis. Longitudinal studies are needed to examine the association of Mn and Se with fibrosis progression.


Assuntos
Mercúrio , Hepatopatia Gordurosa não Alcoólica , Selênio , Cádmio , Estudos Transversais , Feminino , Humanos , Chumbo , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/epidemiologia , Masculino , Manganês/toxicidade , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Inquéritos Nutricionais
13.
Clin Epigenetics ; 14(1): 75, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35681244

RESUMO

BACKGROUND: Epigenetic modifications, including DNA methylation (DNAm), are often related to environmental exposures, and are increasingly recognized as key processes in the pathogenesis of chronic lung disease. American Indian communities have a high burden of lung disease compared to the national average. The objective of this study was to investigate the association of DNAm and lung function in the Strong Heart Study (SHS). We conducted a cross-sectional study of American Indian adults, 45-74 years of age who participated in the SHS. DNAm was measured using the Illumina Infinium Human MethylationEPIC platform at baseline (1989-1991). Lung function was measured via spirometry, including forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC), at visit 2 (1993-1995). Airflow limitation was defined as FEV1 < 70% predicted and FEV1/FVC < 0.7, restriction was defined as FEV1/FVC > 0.7 and FVC < 80% predicted, and normal spirometry was defined as FEV1/FVC > 0.7, FEV1 > 70% predicted, FVC > 80% predicted. We used elastic-net models to select relevant CpGs for lung function and spirometry-defined lung disease. We also conducted bioinformatic analyses to evaluate the biological plausibility of the findings. RESULTS: Among 1677 participants, 21.2% had spirometry-defined airflow limitation and 13.6% had spirometry-defined restrictive pattern lung function. Elastic-net models selected 1118 Differentially Methylated Positions (DMPs) as predictors of airflow limitation and 1385 for restrictive pattern lung function. A total of 12 DMPs overlapped between airflow limitation and restrictive pattern. EGFR, MAPK1 and PRPF8 genes were the most connected nodes in the protein-protein interaction network. Many of the DMPs targeted genes with biological roles related to lung function such as protein kinases. CONCLUSION: We found multiple differentially methylated CpG sites associated with chronic lung disease. These signals could contribute to better understand molecular mechanisms involved in lung disease, as assessed systemically, as well as to identify patterns that could be useful for diagnostic purposes. Further experimental and longitudinal studies are needed to assess whether DNA methylation has a causal role in lung disease.


Assuntos
Epigenoma , Pneumopatias , Adulto , Estudos Transversais , Metilação de DNA , Humanos , Pulmão , Indígena Americano ou Nativo do Alasca
14.
Circ Res ; 131(2): e51-e69, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35658476

RESUMO

BACKGROUND: Epigenetic dysregulation has been proposed as a key mechanism for arsenic-related cardiovascular disease (CVD). We evaluated differentially methylated positions (DMPs) as potential mediators on the association between arsenic and CVD. METHODS: Blood DNA methylation was measured in 2321 participants (mean age 56.2, 58.6% women) of the Strong Heart Study, a prospective cohort of American Indians. Urinary arsenic species were measured using high-performance liquid chromatography coupled to inductively coupled plasma mass spectrometry. We identified DMPs that are potential mediators between arsenic and CVD. In a cross-species analysis, we compared those DMPs with differential liver DNA methylation following early-life arsenic exposure in the apoE knockout (apoE-/-) mouse model of atherosclerosis. RESULTS: A total of 20 and 13 DMPs were potential mediators for CVD incidence and mortality, respectively, several of them annotated to genes related to diabetes. Eleven of these DMPs were similarly associated with incident CVD in 3 diverse prospective cohorts (Framingham Heart Study, Women's Health Initiative, and Multi-Ethnic Study of Atherosclerosis). In the mouse model, differentially methylated regions in 20 of those genes and DMPs in 10 genes were associated with arsenic. CONCLUSIONS: Differential DNA methylation might be part of the biological link between arsenic and CVD. The gene functions suggest that diabetes might represent a relevant mechanism for arsenic-related cardiovascular risk in populations with a high burden of diabetes.


Assuntos
Arsênio , Aterosclerose , Doenças Cardiovasculares , Animais , Apolipoproteínas E , Arsênio/toxicidade , Aterosclerose/induzido quimicamente , Aterosclerose/genética , Doenças Cardiovasculares/induzido quimicamente , Doenças Cardiovasculares/genética , Metilação de DNA , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Estudos Prospectivos
15.
Environ Res ; 207: 112194, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-34653410

RESUMO

BACKGROUND: American Indians have a higher burden of chronic lung disease compared to the US average. Several metals are known to induce chronic lung disease at high exposure levels; however, less is known about the role of environmental-level metal exposure. We investigated respiratory effects of exposure to single metals and metal-mixtures in American Indians who participated in the Strong Heart Study. METHODS: We included 2077 participants with data on 6 metals (As, Cd, Mo, Se, W, Zn) measured from baseline urine samples (1989-1991) and who underwent spirometry testing at follow-up (1993-1995). We used generalized linear regression to assess associations of single metals with spirometry-defined measures of airflow limitation and restrictive ventilatory pattern, and continuous spirometry. We used Bayesian Kernel Machine Regression to investigate the joint effects of the metal-mixture. Sensitivity analyses included stratifying by smoking status and diabetes. RESULTS: Participants were 40% male, with median age 55 years. 21% had spirometry-defined airflow limitation, and 14% had a restrictive ventilatory pattern. In individual metal analyses, Cd was associated with higher odds of airflow limitation and lower FEV1 and FEV1/FVC. Mo was associated with higher odds of restrictive ventilatory pattern and lower FVC. Metal-mixtures analyses confirmed these models. In smoking stratified analyses, the overall metal-mixture was linearly and positively associated with airflow limitation among non-smokers; Cd was the strongest contributor. For restrictive ventilatory pattern, the association with the overall metal-mixture was strong and linear among participants with diabetes and markedly attenuated among participants without diabetes. Among those with diabetes, Mo and Zn were the major contributors. CONCLUSIONS: Environmental-level exposure to several metals was associated with higher odds of spirometry-defined lung disease in an American Indian population. Exposure to multiple metals, including Cd and Mo, may have an under-recognized adverse role on the respiratory system.


Assuntos
Exposição Ambiental , Pneumopatias , Adulto , Teorema de Bayes , Exposição Ambiental/análise , Feminino , Volume Expiratório Forçado , Humanos , Pneumopatias/induzido quimicamente , Pneumopatias/epidemiologia , Masculino , Pessoa de Meia-Idade , Espirometria , Indígena Americano ou Nativo do Alasca
16.
Environ Int ; 158: 106931, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34653810

RESUMO

BACKGROUND: The evaluation of environmental exposure risk requires a global analysis of pollution phenomena, including biological effects and potentially correlated clinical outcomes in susceptible populations. Although human biomonitoring plays a fundamental role in assessing the degree of contamination, it is not effective alone in identifying a direct link between exposure, biomolecular effects and outcomes on target organisms. While toxicogenomics and epidemiology are mainly focused on the investigation of molecular reactions and clinical outcomes, the monitoring of environmental matrices works independently to characterize the territorial distribution of toxic compounds, without proving any correlated health risk for residents. OBJECTIVES: We propose a new biomonitoring model based on a whole systemic analytical evaluation of environmental context. The paradigm of the method consists of identifying the sources of pollution, the migration pathways of those pollutants and their effects on target organisms. By means of this innovative, holistic epidemiological approach, we included healthy human subjects in a cohort to identify potential risks of exposure and predict possible correlated clinical outcomes. 4205 residents of the Campania region were enrolled in the "SPES" biomonitoring study, which especially focused on the areas dubbed "Land of Fires" in the recent decades. DISCUSSION: The analysis of environmental exposure risk suffers the lack of data integration from various science fields, and this comes down to a limited point of view and a limited knowledge of phenomena. In implementing our model, we first constructed an analytical picture of the Real-world situation. We next conducted a comparative risk assessment, in order to identify possible correlations between pollution and health within a holistic view. CONCLUSION: This type of research activities aims to support the implementation of public health interventions and to become a reference model in the evaluation of the risk of exposure to environmental pollutants.


Assuntos
Monitoramento Biológico , Poluentes Ambientais , Exposição Ambiental/análise , Exposição Ambiental/estatística & dados numéricos , Monitoramento Ambiental , Poluentes Ambientais/toxicidade , Poluição Ambiental/estatística & dados numéricos , Humanos , Saúde Pública
17.
Environ Pollut ; 287: 117655, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34426377

RESUMO

Arsenic and uranium in unregulated private wells affect many rural populations across the US. The distribution of these contaminants in the private wells of most American Indian communities is poorly characterized, and seldom studied together. Here, we evaluate the association between drinking water arsenic and uranium levels in wells (n = 441) from three tribal regions in North Dakota and South Dakota participating in the Strong Heart Water Study. Groundwater contamination was extensive; 29% and 7% of wells exceeded maximum contaminant levels for arsenic and uranium respectively. 81% of wells had both arsenic and uranium concentrations at one-tenth of their human-health benchmark (arsenic, 1 µg/L; uranium 3 µg/L). Well arsenic and uranium concentrations were uncorrelated (rs = 0.06); however, there appeared to be a spatial correlation of wells co-contaminated by arsenic and uranium associated with flow along a geologic contact. These findings indicate the importance of measuring multiple metals in well water, and to understand underlying hydrogeological conditions. The underlying mechanisms for the prevalence of arsenic and uranium across Northern Plains Tribal Lands in the US, and in particular the occurrence of both elevated arsenic and uranium in drinking water wells in this region, demands further study.


Assuntos
Arsênio , Urânio , Poluentes Químicos da Água , Arsênio/análise , Monitoramento Ambiental , Humanos , Urânio/análise , Água , Poluentes Químicos da Água/análise
18.
Environ Int ; 157: 106810, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34365318

RESUMO

BACKGROUND: Chronic exposure to certain metals plays a role in disease development. Integrating untargeted metabolomics with urinary metallome data may contribute to better understanding the pathophysiology of diseases and complex molecular interactions related to environmental metal exposures. To discover novel associations between urinary metal biomarkers and metabolism networks, we conducted an integrative metallome-metabolome analysis using a panel of urinary metals and untargeted blood metabolomic data from the Strong Heart Family Study (SHFS). METHODS: The SHFS is a prospective family-based cohort study comprised of American Indian men and women recruited in 2001-2003. This nested case-control analysis of 145 participants of which 50 developed incident diabetes at follow up in 2006-2009, included participants with urinary metal and untargeted metabolomic data. Concentrations of 8 creatinine-adjusted urine metals/metalloids [antimony (Sb), cadmium (Cd), lead (Pb), molybdenum (Mo), selenium (Se), tungsten (W), uranium (U) and zinc (Zn)], and 4 arsenic species [inorganic arsenic (iAs), monomethylarsonate (MMA), dimethylarsinate (DMA), and arsenobetaine (AsB)] were measured. Global metabolomics was performed on plasma samples using high-resolution Orbitrap mass spectrometry. We performed an integrative network analysis using xMWAS and a metabolic pathway analysis using Mummichog. RESULTS: 8,810 metabolic features and 12 metal species were included in the integrative network analysis. Most metal species were associated with distinct subsets of metabolites, forming single-metal-multiple-metabolite clusters (|r|>0.28, p-value < 0.001). DMA (clustering with W), iAs (clustering with U), together with Mo and Se showed modest interactions through associations with common metabolites. Pathway enrichment analysis of associated metabolites (|r|>0.17, p-value < 0.1) showed effects in amino acid metabolism (AsB, Sb, Se and U), fatty acid and lipid metabolism (iAs, Mo, W, Sb, Pb, Cd and Zn). In stratified analyses among participants who went on to develop diabetes, iAs and U clustered together through shared metabolites, and both were associated with the phosphatidylinositol phosphate metabolism pathway; metals were also associated with metabolites in energy metabolism (iAs, MMA, DMA, U, W) and xenobiotic degradation and metabolism (DMA, Pb) pathways. CONCLUSION: In this integrative analysis of multiple metals and untargeted metabolomics, results show common associations with fatty acid, energy and amino acid metabolism pathways. Results for individual metabolite associations differed for different metals, indicating that larger populations will be needed to confirm the metal-metal interactions detected here, such as the strong interaction of uranium and inorganic arsenic. Understanding the biochemical networks underlying metabolic homeostasis and their association with exposure to multiple metals may help identify novel biomarkers, pathways of disease, potential signatures of environmental metal exposure.


Assuntos
Arsênio , Diabetes Mellitus , Urânio , Estudos de Coortes , Diabetes Mellitus/epidemiologia , Exposição Ambiental/análise , Feminino , Humanos , Masculino , Metaboloma , Estudos Prospectivos
20.
Environ Res ; 200: 111387, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34090890

RESUMO

BACKGROUND: Evidence evaluating the prospective association between low-to moderate-inorganic arsenic (iAs) exposure and cardiovascular disease in the general US population is limited. We evaluated the association between urinary arsenic concentrations in National Health and Nutrition Examination Survey (NHANES) 2003-2014 and heart disease mortality linked from the National Death Index through 2015. METHODS: We modeled iAs exposure as urinary total arsenic and dimethylarsinate among participants with low seafood intake, based on low arsenobetaine levels (N = 4990). We estimated multivariable adjusted hazard ratios (HRs) for heart disease mortality per interquartile range (IQR) increase in urinary arsenic levels using survey-weighted, Cox proportional hazards models, and evaluated flexible dose-response analyses using restricted quadratic spline models. We updated a previously published relative risk of coronary heart disease mortality from a dose-response meta-analysis per a doubling of water iAs (e.g., from 10 to 20 µg/L) with our results from NHANES 2003-2014, assuming all iAs exposure came from drinking water. RESULTS: A total of 77 fatal heart disease events occurred (median follow-up time 75 months). The adjusted HRs (95% CI) of heart disease mortality for an increase in urinary total arsenic and DMA corresponding to the interquartile range were 1.20 (0.83, 1.74) and 1.18 (0.68, 2.05), respectively. Restricted quadratic splines indicate a significant association between increasing urinary total arsenic and the HR of fatal heart disease for all participants at the lowest exposure levels <4.5 µg/L. The updated pooled relative risk of coronary heart disease mortality per doubling of water iAs (µg/L) was 1.16 (95% CI 1.07, 1.25). CONCLUSIONS: Despite a small number of events, relatively short follow-up time, and high analytical limits of detection for urinary arsenic species, iAs exposure at low-to moderate-levels is consistent with increased heart disease mortality in NHANES 2003-2014 although the associations were only significant in flexible dose-response models.


Assuntos
Arsênio , Arsenicais , Doença das Coronárias , Arsênio/toxicidade , Ácido Cacodílico , Exposição Ambiental/efeitos adversos , Humanos , Inquéritos Nutricionais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA