Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
JCI Insight ; 5(21)2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-32990680

RESUMO

Patient-derived organoid models are proving to be a powerful platform for both basic and translational studies. Here we conduct a methodical analysis of pancreatic ductal adenocarcinoma (PDAC) tumor organoid drug response in paired patient-derived xenograft (PDX) and PDX-derived organoid (PXO) models grown under WNT-free culture conditions. We report a specific relationship between area under the curve value of organoid drug dose response and in vivo tumor growth, irrespective of the drug treatment. In addition, we analyzed the glycome of PDX and PXO models and demonstrate that PXOs recapitulate the in vivo glycan landscape. In addition, we identify a core set of 57 N-glycans detected in all 10 models that represent 50%-94% of the relative abundance of all N-glycans detected in each of the models. Last, we developed a secreted biomarker discovery pipeline using media supernatant of organoid cultures and identified potentially new extracellular vesicle (EV) protein markers. We validated our findings using plasma samples from patients with PDAC, benign gastrointestinal diseases, and chronic pancreatitis and discovered that 4 EV proteins are potential circulating biomarkers for PDAC. Thus, we demonstrate the utility of organoid cultures to not only model in vivo drug responses but also serve as a powerful platform for discovering clinically actionable serologic biomarkers.


Assuntos
Antineoplásicos/farmacologia , Biomarcadores Tumorais/sangue , Carcinoma Ductal Pancreático/patologia , Modelos Animais de Doenças , Vesículas Extracelulares/metabolismo , Organoides/patologia , Neoplasias Pancreáticas/patologia , Animais , Apoptose , Carcinoma Ductal Pancreático/sangue , Carcinoma Ductal Pancreático/tratamento farmacológico , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Nus , Organoides/efeitos dos fármacos , Organoides/metabolismo , Neoplasias Pancreáticas/sangue , Neoplasias Pancreáticas/tratamento farmacológico , Polissacarídeos/metabolismo , Prognóstico , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Neoplasias Pancreáticas
2.
Cells ; 9(7)2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32630670

RESUMO

Angiopoietin-1 (Ang-1) is a ligand of Tie-2 receptors that promotes angiogenesis. It has been established that regulatory loops exist between angiogenic growth factors and distinct pro or anti-angiogenic miRNAs, but the nature and the roles of Ang-1-regulated miRNAs remain unclear. In this study, we assessed the role of miR-640 in Ang-1-induced angiogenesis in human umbilical vein endothelial cells (HUVECs). Exposure to Ang-1 (300 ng/mL) from 6 to 72 h significantly decreased expression of mature miR-640, a response that was mediated by Tie-2 receptors and was also observed in response to Ang-2, the vascular endothelial growth factor, and transforming growth factor ß. Increasing miR-640 levels using a mimic inhibited Ang-1-induced cell migration and capillary-like tube formation whereas inhibition of miR-640 enhanced these responses. Pull down assays of biotinylated miR-640 revealed that miR-640 directly targets Zinc Finger Protein 91 (ZFP91), an atypical E3-ubiquitin ligase. Ang-1 exposure induced ZFP91 expression through down-regulation of miR-640. Silencing of ZFP91 significantly inhibited Ang-1-induced cell migration and tube formation. We conclude that Ang-1 upregulates ZFP91 expression through transcriptional down-regulation of miR-640 and that ZFP91 plays important roles in the promotion of Ang-1-induced endothelial cell migration and differentiation.


Assuntos
MicroRNAs/metabolismo , Neovascularização Fisiológica , Ubiquitina-Proteína Ligases/genética , Angiopoietina-1/metabolismo , Diferenciação Celular , Movimento Celular , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , MicroRNAs/genética , Receptor TIE-2/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
3.
Genesis ; 58(7): e23369, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32543746

RESUMO

Extracellular vesicles (EVs) are abundant, lipid-enclosed vectors that contain nucleic acids and proteins, they can be secreted from donor cells and freely circulate, and they can be engulfed by recipient cells thus enabling systemic communication between heterotypic cell types. However, genetic tools for labeling, isolating, and auditing cell type-specific EVs in vivo, without prior in vitro manipulation, are lacking. We have used CRISPR-Cas9-mediated genome editing to generate mice bearing a CD63-emGFPloxP/stop/loxP knock-in cassette that enables the specific labeling of circulating CD63+ vesicles from any cell type when crossed with lineage-specific Cre recombinase driver mice. As proof-of-principle, we have crossed these mice with Cdh5-CreERT2 mice to generate CD63emGFP+ vasculature. Using these mice, we show that developing vasculature is marked with emerald GFP (emGFP) following tamoxifen administration to pregnant females. In adult mice, quiescent vasculature and angiogenic vasculature (in tumors) is also marked with emGFP. Moreover, whole plasma-purified EVs contain a subpopulation of emGFP+ vesicles that are derived from the endothelium, co-express additional EV (e.g., CD9 and CD81) and endothelial cell (e.g., CD105) markers, and they harbor specific miRNAs (e.g., miR-126, miR-30c, and miR-125b). This new mouse strain should be a useful genetic tool for generating cell type-specific, CD63+ EVs that freely circulate in serum and can subsequently be isolated and characterized using standard methodologies.


Assuntos
Vesículas Extracelulares/metabolismo , Técnicas de Introdução de Genes/métodos , Tetraspanina 30/genética , Animais , Sistemas CRISPR-Cas , Células Cultivadas , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Integrases/genética , Integrases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Tetraspanina 30/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA