Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Res Microbiol ; 174(6): 104089, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37348743

RESUMO

Bacillus thuringiensis israelensis is largely regarded as the most selective, safe and ecofriendly biopesticide used for the control of insect vectors of human diseases. Bti enthomopathogenicity relies on the Cry and Cyt δ-endotoxins, produced as crystalline inclusions during sporulation. Insecticidal selectivity of Bti is mainly ascribed to the binding of the Cry toxins to receptors in the gut of target insects. However, the contribution of epithelial defenses in limiting Bti side effects in non-target species remains largely unexplored. Here, taking advantage of the genetically tractable Drosophila melanogaster model and its amenability for deciphering highly conserved innate immune defenses, we unravel a central role of the NF-κB factor Relish in the protection against the effects of ingested Bti spores in a non-susceptible host. Intriguingly, our data indicate that the Bti-induced Relish response is independent of its canonical activation downstream of peptidoglycan sensing and does not involve its longstanding role in the regulation of antimicrobial peptides encoding genes. In contrast, our data highlight a novel enterocyte specific function of Relish that is essential for preventing general septicemia following Bti oral infections strictly when producing δ-endotoxins. Altogether, our data provide novel insights into Bti-hosts interactions of prominent interest for the optimization and sustainability of insects' biocontrol strategies.


Assuntos
Bacillus thuringiensis , Endotoxinas , Animais , Humanos , Endotoxinas/genética , Endotoxinas/metabolismo , Endotoxinas/farmacologia , Bacillus thuringiensis/genética , NF-kappa B/metabolismo , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Toxinas de Bacillus thuringiensis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/farmacologia
2.
Res Microbiol ; 174(6): 104074, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37149076

RESUMO

The Bacillus cereus group comprises genetically related Gram-positive spore-forming bacteria that colonize a wide range of ecological niches and hosts. Despite their high degree of genome conservation, extrachromosomal genetic material diverges between these species. The discriminating properties of the B. cereus group strains are mainly due to plasmid-borne toxins, reflecting the importance of horizontal gene transfers in bacterial evolution and species definition. To investigate how a newly acquired megaplasmid can impact the transcriptome of its host, we transferred the pCER270 from the emetic B. cereus strains to phylogenetically distant B. cereus group strains. RNA-sequencing experiments allowed us to determine the transcriptional influence of the plasmid on host gene expression and the impact of the host genomic background on the pCER270 gene expression. Our results show a transcriptional cross-regulation between the megaplasmid and the host genome. pCER270 impacted carbohydrate metabolism and sporulation genes expression, with a higher effect in the natural host of the plasmid, suggesting a role of the plasmid in the adaptation of the carrying strain to its environment. In addition, the host genomes also modulated the expression of pCER270 genes. Altogether, these results provide an example of the involvement of megaplasmids in the emergence of new pathogenic strains.


Assuntos
Bacillus , Bacillus cereus/genética , Plasmídeos/genética , Sequência de Bases , Cromossomos
3.
Front Insect Sci ; 3: 1260333, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38469511

RESUMO

Understanding the intricate interplay between the gut microbiota and the immune response in insects is crucial, given its diverse impact on the pathogenesis of various microbial species. The microbiota's modulation of the host immune system is one such mechanism, although its complete impact on immune responses remains elusive. This study investigated the tripartite interaction between the gut microbiota, pathogens, and the host's response in Galleria mellonella larvae reared under axenic (sterile) and conventional (non-sterile) conditions. The influence of the microbiota on host fitness during infections was evaluated via two different routes: oral infection induced by Bacillus thuringiensis subsp. galleriae (Btg), and topical infection induced by Metarhizium robertsii (Mr). We observed that larvae without a microbiota can successfully fulfill their life cycle, albeit with more variation in their developmental time. We subsequently performed survival assays on final-instar larvae, using the median lethal dose (LD50) of Btg and Mr. Our findings indicated that axenic larvae were more vulnerable to an oral infection of Btg; specifically, a dose that was calculated to be half-lethal for the conventional group resulted in a 90%-100% mortality rate in the axenic group. Through a dual-analysis experimental design, we could identify the status of the gut microbiota using 16S rRNA sequencing and assess the level of immune-related gene expression in the same group of larvae at basal conditions and during infection. This analysis revealed that the microbiota of our conventionally reared population was dominated entirely by four Enterococcus species, and these species potentially stimulated the immune response in the gut, due to the increased basal expression of two antimicrobial peptides (AMPs)-gallerimycin and gloverin-in the conventional larvae compared with the axenic larvae. Furthermore, Enterococcus mundtii, isolated from the gut of conventional larvae, showed inhibition activity against Btg in vitro. Lastly, other immune effectors, namely, phenoloxidase activity in the hemolymph and total reactive oxygen/nitrogen species (ROS/RNS) in the gut, were tested to further investigate the extent of the stimulation of the microbiota on the immune response. These findings highlight the immune-modulatory role of the Enterococcus-dominated gut microbiota, an increasingly reported microbiota assemblage of laboratory populations of Lepidoptera, and its influence on the host's response to oral and topical infections.

4.
Microorganisms ; 8(12)2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33353020

RESUMO

The phylogeny, identification, and characterization of 33 B. cereus sensu lato isolates originating from 17 agricultural soils from 11 countries were analyzed on the basis of whole genome sequencing. Phylogenetic analyses revealed all isolates are divided into six groups, which follows the generally accepted phylogenetic division of B. cereus sensu lato isolates. Four different identification methods resulted in a variation in the identity of the isolates, as none of the isolates were identified as the same species by all four methods-only the recent identification method proposed directly reflected the phylogeny of the isolates. This points to the importance of describing the basis and method used for the identification. The presence and percent identity of the protein product of 19 genes potentially involved in pathogenicity divided the 33 isolates into groups corresponding to phylogenetic division of the isolates. This suggests that different pathotypes exist and that it is possible to differentiate between them by comparing the percent identity of proteins potentially involved in pathogenicity. This also reveals that a basic link between phylogeny and pathogenicity is likely to exist. The geographical distribution of the isolates is not random: they are distributed in relation to their division into the six phylogenetic groups, which again relates to different ecotypes with different temperature growth ranges. This means that we find it easier to analyze and understand the results obtained from the 33 B. cereus sensu lato isolates in a phylogenetic, patho-type and ecotype-oriented context, than in a context based on uncertain identification at the species level.

5.
Front Microbiol ; 11: 611220, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33391240

RESUMO

Antimicrobial peptides (AMPs) are essential effectors of the host innate immune system and they represent promising molecules for the treatment of multidrug resistant microbes. A better understanding of microbial resistance to these defense peptides is thus prerequisite for the control of infectious diseases. Here, using a random mutagenesis approach, we identify the fliK gene, encoding an internal molecular ruler that controls flagella hook length, as an essential element for Bacillus thuringiensis resistance to AMPs in Drosophila. Unlike its parental strain, that is highly virulent to both wild-type and AMPs deficient mutant flies, the fliK deletion mutant is only lethal to the latter's. In agreement with its conserved function, the fliK mutant is non-flagellated and exhibits highly compromised motility. However, comparative analysis of the fliK mutant phenotype to that of a fla mutant, in which the genes encoding flagella proteins are interrupted, indicate that B. thuringiensis FliK-dependent resistance to AMPs is independent of flagella assembly. As a whole, our results identify FliK as an essential determinant for B. thuringiensis virulence in Drosophila and provide new insights on the mechanisms underlying bacteria resistance to AMPs.

6.
Front Microbiol ; 8: 1437, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28824570

RESUMO

The dlt operon of Gram-positive bacteria is required for the incorporation of D-alanine esters into cell wall-associated teichoic acids (TAs). Addition of D-alanine to TAs reduces the negative charge of the cell envelope thereby preventing cationic antimicrobial peptides (CAMPs) from reaching their target of action on the bacterial surface. In most gram-positive bacteria, this operon consists of five genes dltXABCD but the involvement of the first ORF (dltX) encoding a small protein of unknown function, has never been investigated. The aim of this study was to establish whether this protein is involved in the D-alanylation process in Bacillus thuringiensis. We, therefore constructed an in frame deletion mutant of dltX, without affecting the expression of the other genes of the operon. The growth characteristics of the dltX mutant and those of the wild type strain were similar under standard in vitro conditions. However, disruption of dltX drastically impaired the resistance of B. thuringiensis to CAMPs and significantly attenuated its virulence in two insect species. Moreover, high-performance liquid chromatography studies showed that the dltX mutant was devoid of D-alanine, and electrophoretic mobility measurements indicated that the cells carried a higher negative surface charge. Scanning electron microscopy experiments showed morphological alterations of these mutant bacteria, suggesting that depletion of D-alanine from TAs affects cell wall structure. Our findings suggest that DltX is essential for the incorporation of D-alanyl esters into TAs. Therefore, DltX plays a direct role in the resistance to CAMPs, thus contributing to the survival of B. thuringiensis in insects. To our knowledge, this work is the first report examining the involvement of dltX in the D-alanylation of TAs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA