Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Int J Mol Sci ; 25(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38928257

RESUMO

The peripheral nervous system can encounter alterations due to exposure to some of the most commonly used anticancer drugs (platinum drugs, taxanes, vinca alkaloids, proteasome inhibitors, thalidomide), the so-called chemotherapy-induced peripheral neurotoxicity (CIPN). CIPN can be long-lasting or even permanent, and it is detrimental for the quality of life of cancer survivors, being associated with persistent disturbances such as sensory loss and neuropathic pain at limb extremities due to a mostly sensory axonal polyneuropathy/neuronopathy. In the state of the art, there is no efficacious preventive/curative treatment for this condition. Among the reasons for this unmet clinical and scientific need, there is an uncomplete knowledge of the pathogenetic mechanisms. Ion channels and transporters are pivotal elements in both the central and peripheral nervous system, and there is a growing body of literature suggesting that they might play a role in CIPN development. In this review, we first describe the biophysical properties of these targets and then report existing data for the involvement of ion channels and transporters in CIPN, thus paving the way for new approaches/druggable targets to cure and/or prevent CIPN.


Assuntos
Antineoplásicos , Canais Iônicos , Doenças do Sistema Nervoso Periférico , Humanos , Antineoplásicos/efeitos adversos , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/metabolismo , Canais Iônicos/metabolismo , Animais , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo
2.
Front Pharmacol ; 15: 1385698, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38476333

RESUMO

[This corrects the article DOI: 10.3389/fphar.2024.1328460.].

3.
Front Pharmacol ; 15: 1328460, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38327988

RESUMO

The inner ear is the organ responsible for hearing and balance. Inner ear dysfunction can be the result of infection, trauma, ototoxic drugs, genetic mutation or predisposition. Often, like for Ménière disease, the cause is unknown. Due to the complex access to the inner ear as a fluid-filled cavity within the temporal bone of the skull, effective diagnosis of inner ear pathologies and targeted drug delivery pose significant challenges. Samples of inner ear fluids can only be collected during surgery because the available procedures damage the tiny and fragile structures of the inner ear. Concerning drug administration, the final dose, kinetics, and targets cannot be controlled. Overcoming these limitations is crucial for successful inner ear precision medicine. Recently, notable advancements in microneedle technologies offer the potential for safe sampling of inner ear fluids and local treatment. Ultrasharp microneedles can reach the inner ear fluids with minimal damage to the organ, collect µl amounts of perilymph, and deliver therapeutic agents in loco. This review highlights the potential of ultrasharp microneedles, combined with nano vectors and gene therapy, to effectively treat inner ear diseases of different etiology on an individual basis. Though further research is necessary to translate these innovative approaches into clinical practice, these technologies may represent a true breakthrough in the clinical approach to inner ear diseases, ushering in a new era of personalized medicine.

4.
J Colloid Interface Sci ; 662: 446-459, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38364470

RESUMO

Lipid nanoparticles own a remarkable potential in nanomedicine, only partially disclosed. While the clinical use of liposomes and cationic lipid-nucleic acid complexes is well-established, liquid lipid nanoparticles (nanoemulsions), solid lipid nanoparticles, and nanostructured lipid carriers have even greater possibilities. However, they face obstacles in being used in clinics due to a lack of understanding about the molecular mechanisms controlling their drug loading and release, interactions with the biological environment (such as the protein corona), and shelf-life stability. To create effective drug delivery carriers and successfully translate bench research to clinical settings, it is crucial to have a thorough understanding of the internal structure of lipid nanoparticles. Through synchrotron small-angle X-ray scattering experiments, we determined the spatial distribution and internal structure of the nanoparticles' lipid, surfactant, and the bound water in them. The nanoparticles themselves have a barrel-like shape that consists of coplanar lipid platelets (specifically cetyl palmitate) that are covered by loosely spaced polysorbate 80 surfactant molecules, whose polar heads retain a large amount of bound water. To reduce the interface cost of bound water with unbound water without stacking, the platelets collapse onto each other. This internal structure challenges the classical core-shell model typically used to describe solid lipid nanoparticles and could play a significant role in drug loading and release, biological fluid interaction, and nanoparticle stability, making our findings valuable for the rational design of lipid-based nanoparticles.


Assuntos
Lipossomos , Nanopartículas , Raios X , Nanopartículas/química , Portadores de Fármacos/química , Tensoativos/química , Lipídeos/química , Água/química , Tamanho da Partícula
5.
Front Cell Neurosci ; 17: 1082010, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36816855

RESUMO

Oxytocin (OT) is a neuropeptide widely known for its peripheral hormonal effects (i.e., parturition and lactation) and central neuromodulatory functions, related especially to social behavior and social, spatial, and episodic memory. The hippocampus is a key structure for these functions, it is innervated by oxytocinergic fibers, and contains OT receptors (OTRs). The hippocampal OTR distribution is not homogeneous among its subregions and types of neuronal cells, reflecting the specificity of oxytocin's modulatory action. In this review, we describe the most recent discoveries in OT/OTR signaling in the hippocampus, focusing primarily on the electrophysiological oxytocinergic modulation of the OTR-expressing hippocampal neurons. We then look at the effect this modulation has on the balance of excitation/inhibition and synaptic plasticity in each hippocampal subregion. Additionally, we review OTR downstream signaling, which underlies the OT effects observed in different types of hippocampal neuron. Overall, this review comprehensively summarizes the advancements in unraveling the neuromodulatory functions exerted by OT on specific hippocampal networks.

6.
Cells ; 11(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36497118

RESUMO

Numerous studies recently showed that the inhibitory neurotransmitter, γ-aminobutyric acid (GABA), can stimulate cerebral angiogenesis and promote neurovascular coupling by activating the ionotropic GABAA receptors on cerebrovascular endothelial cells, whereas the endothelial role of the metabotropic GABAB receptors is still unknown. Preliminary evidence showed that GABAA receptor stimulation can induce an increase in endothelial Ca2+ levels, but the underlying signaling pathway remains to be fully unraveled. In the present investigation, we found that GABA evoked a biphasic elevation in [Ca2+]i that was initiated by inositol-1,4,5-trisphosphate- and nicotinic acid adenine dinucleotide phosphate-dependent Ca2+ release from neutral and acidic Ca2+ stores, respectively, and sustained by store-operated Ca2+ entry. GABAA and GABAB receptors were both required to trigger the endothelial Ca2+ response. Unexpectedly, we found that the GABAA receptors signal in a flux-independent manner via the metabotropic GABAB receptors. Likewise, the full Ca2+ response to GABAB receptors requires functional GABAA receptors. This study, therefore, sheds novel light on the molecular mechanisms by which GABA controls endothelial signaling at the neurovascular unit.


Assuntos
Células Endoteliais , Receptores de GABA , Humanos , Receptores de GABA/metabolismo , Células Endoteliais/metabolismo , Ácido gama-Aminobutírico/farmacologia , Ácido gama-Aminobutírico/metabolismo , Encéfalo/metabolismo
7.
Prog Neurobiol ; 216: 102313, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35760142

RESUMO

We have uncovered a novel role for astrocytes-derived extracellular vesicles (EVs) in controlling intraneuronal Ca2+ concentration ([Ca2+]i) and identified transglutaminase-2 (TG2) as a surface-cargo of astrocytes-derived EVs. Incubation of hippocampal neurons with primed astrocyte-derived EVs have led to an increase in [Ca2+]i, unlike EVs from TG2-knockout astrocytes. Exposure of neurons or brain slices to extracellular TG2 promoted a [Ca2+]i rise, which was reversible upon TG2 removal and was dependent on Ca2+ influx through the plasma membrane. Patch-clamp and calcium imaging recordings revealed TG2-dependent neuronal membrane depolarization and activation of inward currents, due to the Na+/Ca2+-exchanger (NCX) operating in the reverse mode and indirect activation of L-type VOCCs, as indicated by VOCCs/NCX pharmacological inhibitors. A subunit of Na+/K+-ATPase was selected by comparative proteomics and identified as being functionally inhibited by extracellular TG2, implicating Na+/K+-ATPase inhibition in NCX reverse mode-switching leading to Ca2+ influx and higher basal [Ca2+]i. These data suggest that reactive astrocytes control intraneuronal [Ca2+]i through release of EVs with TG2 as responsible cargo, which could have a significant impact on synaptic activity in brain inflammation.


Assuntos
Astrócitos , Vesículas Extracelulares , Adenosina Trifosfatases , Astrócitos/metabolismo , Cálcio/metabolismo , Vesículas Extracelulares/metabolismo , Homeostase , Humanos , Neurônios/metabolismo , Proteína 2 Glutamina gama-Glutamiltransferase , Trocador de Sódio e Cálcio/metabolismo
8.
Mol Neurobiol ; 58(6): 2824-2835, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33511502

RESUMO

In light of previous results, we assessed whether liposomes functionalized with ApoE-derived peptide (mApoE) and phosphatidic acid (PA) (mApoE-PA-LIP) impacted on intracellular calcium (Ca2+) dynamics in cultured human cerebral microvascular endothelial cells (hCMEC/D3), as an in vitro human blood-brain barrier (BBB) model, and in cultured astrocytes. mApoE-PA-LIP pre-treatment actively increased both the duration and the area under the curve (A.U.C) of the ATP-evoked Ca2+ waves in cultured hCMEC/D3 cells as well as in cultured astrocytes. mApoE-PA-LIP increased the ATP-evoked intracellular Ca2+ waves even under 0 [Ca2+]e conditions, thus indicating that the increased intracellular Ca2+ response to ATP is mainly due to endogenous Ca2+ release. Indeed, when Sarco-Endoplasmic Reticulum Calcium ATPase (SERCA) activity was blocked by cyclopiazonic acid (CPA), the extracellular application of ATP failed to trigger any intracellular Ca2+ waves, indicating that metabotropic purinergic receptors (P2Y) are mainly involved in the mApoE-PA-LIP-induced increase of the Ca2+ wave triggered by ATP. In conclusion, mApoE-PA-LIP modulate intracellular Ca2+ dynamics evoked by ATP when SERCA is active through inositol-1,4,5-trisphosphate-dependent (InsP3) endoplasmic reticulum Ca2+ release. Considering that P2Y receptors represent important pharmacological targets to treat cognitive dysfunctions, and that P2Y receptors have neuroprotective effects in neuroinflammatory processes, the enhancement of purinergic signaling provided by mApoE-PA-LIP could counteract Aß-induced vasoconstriction and reduction in cerebral blood flow (CBF). Our obtained results could give an additional support to promote mApoE-PA-LIP as effective therapeutic tool for Alzheimer's disease (AD).


Assuntos
Doença de Alzheimer/patologia , Astrócitos/metabolismo , Encéfalo/patologia , Sinalização do Cálcio , Células Endoteliais/metabolismo , Microvasos/patologia , Receptores Purinérgicos/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Linhagem Celular , Retículo Endoplasmático/metabolismo , Células Endoteliais/efeitos dos fármacos , Humanos , Indóis/farmacologia , Lipossomos , Ácidos Fosfatídicos/química , Ratos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
9.
Front Physiol ; 12: 781874, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34987415

RESUMO

This review analyses the mechanisms by which lung fluid balance is strictly controlled in the air-blood barrier (ABB). Relatively large trans-endothelial and trans-epithelial Starling pressure gradients result in a minimal flow across the ABB thanks to low microvascular permeability aided by the macromolecular structure of the interstitial matrix. These edema safety factors are lost when the integrity of the interstitial matrix is damaged. The result is that small Starling pressure gradients, acting on a progressively expanding alveolar barrier with high permeability, generate a high transvascular flow that causes alveolar flooding in minutes. We modeled the trans-endothelial and trans-epithelial Starling pressure gradients under control conditions, as well as under increasing alveolar pressure (Palv) conditions of up to 25 cmH2O. We referred to the wet-to-dry weight (W/D) ratio, a specific index of lung water balance, to be correlated with the functional state of the interstitial structure. W/D averages ∼5 in control and might increase by up to ∼9 in severe edema, corresponding to ∼70% loss in the integrity of the native matrix. Factors buffering edemagenic conditions include: (i) an interstitial capacity for fluid accumulation located in the thick portion of ABB, (ii) the increase in interstitial pressure due to water binding by hyaluronan (the "safety factor" opposing the filtration gradient), and (iii) increased lymphatic flow. Inflammatory factors causing lung tissue damage include those of bacterial/viral and those of sterile nature. Production of reactive oxygen species (ROS) during hypoxia or hyperoxia, or excessive parenchymal stress/strain [lung overdistension caused by patient self-induced lung injury (P-SILI)] can all cause excessive inflammation. We discuss the heterogeneity of intrapulmonary distribution of W/D ratios. A W/D ∼6.5 has been identified as being critical for the transition to severe edema formation. Increasing Palv for W/D > 6.5, both trans-endothelial and trans-epithelial gradients favor filtration leading to alveolar flooding. Neither CT scan nor ultrasound can identify this initial level of lung fluid balance perturbation. A suggestion is put forward to identify a non-invasive tool to detect the earliest stages of perturbation of lung fluid balance before the condition becomes life-threatening.

11.
ACS Chem Neurosci ; 11(15): 2361-2369, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32627524

RESUMO

Spike protein (S protein) is the virus "key" to infect cells and is able to strongly bind to the human angiotensin-converting enzyme2 (ACE2), as has been reported. In fact, Spike structure and function is known to be highly important for cell infection as well as for entering the brain. Growing evidence indicates that different types of coronaviruses not only affect the respiratory system, but they might also invade the central nervous system (CNS). However, very little evidence has been so far reported on the presence of COVID-19 in the brain, and the potential exploitation, by this virus, of the lung to brain axis to reach neurons has not been completely understood. In this Article, we assessed the SARS-CoV and SARS-CoV-2 Spike protein sequence, structure, and electrostatic potential using computational approaches. Our results showed that the S proteins of SARS-CoV-2 and SARS-CoV are highly similar, sharing a sequence identity of 77%. In addition, we found that the SARS-CoV-2 S protein is slightly more positively charged than that of SARS-CoV since it contains four more positively charged residues and five less negatively charged residues which may lead to an increased affinity to bind to negatively charged regions of other molecules through nonspecific and specific interactions. Analysis the S protein binding to the host ACE2 receptor showed a 30% higher binding energy for SARS-CoV-2 than for the SARS-CoV S protein. These results might be useful for understanding the mechanism of cell entry, blood-brain barrier crossing, and clinical features related to the CNS infection by SARS-CoV-2.


Assuntos
Betacoronavirus/genética , Encéfalo/virologia , Infecções por Coronavirus/genética , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/virologia , Pneumonia Viral/genética , Glicoproteína da Espícula de Coronavírus/genética , Sequência de Aminoácidos , Betacoronavirus/química , COVID-19 , Humanos , Pandemias , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química
12.
Cell Mol Life Sci ; 77(11): 2235-2253, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31473770

RESUMO

Neurovascular coupling (NVC) is the mechanism whereby an increase in neuronal activity causes an increase in local cerebral blood flow (CBF) to ensure local supply of oxygen and nutrients to the activated areas. The excitatory neurotransmitter glutamate gates post-synaptic N-methyl-D-aspartate receptors to mediate extracellular Ca2+ entry and stimulate neuronal nitric oxide (NO) synthase to release NO, thereby triggering NVC. Recent work suggested that endothelial Ca2+ signals could underpin NVC by recruiting the endothelial NO synthase. For instance, acetylcholine induced intracellular Ca2+ signals followed by NO release by activating muscarinic 5 receptors in hCMEC/D3 cells, a widely employed model of human brain microvascular endothelial cells. Herein, we sought to assess whether also glutamate elicits metabotropic Ca2+ signals and NO release in hCMEC/D3 cells. Glutamate induced a dose-dependent increase in intracellular Ca2+ concentration ([Ca2+]i) that was blocked by α-methyl-4-carboxyphenylglycine and phenocopied by trans-1-amino-1,3-cyclopentanedicarboxylic acid, which, respectively, block and activate group 1 metabotropic glutamate receptors (mGluRs). Accordingly, hCMEC/D3 expressed both mGluR1 and mGluR5 and the Ca2+ response to glutamate was inhibited by their pharmacological blockade with, respectively, CPCCOEt and MTEP hydrochloride. The Ca2+ response to glutamate was initiated by endogenous Ca2+ release from the endoplasmic reticulum and endolysosomal Ca2+ store through inositol-1,4,5-trisphosphate receptors and two-pore channels, respectively, and sustained by store-operated Ca2+ entry. In addition, glutamate induced robust NO release that was suppressed by pharmacological blockade of the accompanying increase in [Ca2+]i. These data demonstrate for the first time that glutamate may induce metabotropic Ca2+ signals in human brain microvascular endothelial cells. The Ca2+ response to glutamate is likely to support NVC during neuronal activity, thereby reinforcing the emerging role of brain microvascular endothelial cells in the regulation of CBF.


Assuntos
Encéfalo/irrigação sanguínea , Sinalização do Cálcio , Células Endoteliais/metabolismo , Ácido Glutâmico/metabolismo , Acoplamento Neurovascular , Receptores de Glutamato Metabotrópico/metabolismo , Linhagem Celular , Células Endoteliais/citologia , Humanos , Microvasos/citologia , Microvasos/metabolismo , Óxido Nítrico/metabolismo
13.
J Cell Physiol ; 235(2): 1515-1530, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31310018

RESUMO

The neuromodulator histamine is able to vasorelax in human cerebral, meningeal and temporal arteries via endothelial histamine 1 receptors (H1 Rs) which result in the downstream production of nitric oxide (NO), the most powerful vasodilator transmitter in the brain. Although endothelial Ca 2+ signals drive histamine-induced NO release throughout the peripheral circulation, the mechanism by which histamine evokes NO production in human cerebrovascular endothelial cells is still unknown. Herein, we exploited the human cerebral microvascular endothelial cell line, hCMEC/D3, to assess the role of intracellular Ca 2+ signaling in histamine-induced NO release. To achieve this goal, hCMEC/D3 cells were loaded with the Ca 2+ - and NO-sensitive dyes, Fura-2/AM and DAF-FM/AM, respectively. Histamine elicited repetitive oscillations in intracellular Ca 2+ concentration in hCMEC/D3 cells throughout a concentration range spanning from 1 pM up to 300 µM. The oscillatory Ca 2+ response was suppressed by the inhibition of H 1 Rs with pyrilamine, whereas H 1 R was abundantly expressed at the protein level. We further found that histamine-induced intracellular Ca 2+ oscillations were initiated by endogenous Ca 2+ mobilization through inositol-1,4,5-trisphosphate- and nicotinic acid dinucleotide phosphate-sensitive channels and maintained over time by store-operated Ca 2+ entry. In addition, histamine evoked robust NO release that was prevented by interfering with the accompanying intracellular Ca 2+ oscillations, thereby confirming that the endothelial NO synthase is recruited by Ca 2+ spikes also in hCMEC/D3 cells. These data provide the first evidence that histamine evokes NO production from human cerebrovascular endothelial cells through intracellular Ca 2+ oscillations, thereby shedding novel light on the mechanisms by which this neuromodulator controls cerebral blood flow.


Assuntos
Encéfalo/irrigação sanguínea , Cálcio/metabolismo , Células Endoteliais/efeitos dos fármacos , Histamina/farmacologia , Microvasos/citologia , Óxido Nítrico/metabolismo , Linhagem Celular , Células Endoteliais/metabolismo , Agonistas dos Receptores Histamínicos/farmacologia , Humanos , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , NADP/análogos & derivados , NADP/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo
14.
Neuropharmacology ; 164: 107905, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31811874

RESUMO

Oxaliplatin (OHP) Induced Peripheral Neurotoxicity (OIPN) is one of the dose-limiting toxicities of the drug and these adverse effects limit cancer therapy with L-OHP, used for colorectal cancer treatment. Acute neurotoxicity consists of symptoms that are the hallmarks of a transient axonal hyperexcitability; chronic neurotoxicity has a clinical picture compatible with a length-dependent sensory neuropathy. Acute OIPN pathogenesis has been linked to sodium voltage-operated channels (Na + VOC) dysfunction and it has been advocated as a possible predisposing factor to chronic neurotoxicity. We tested if topiramate (TPM), a well-known Na + VOC modulator, was able to modify acute as well as chronic OIPN. The project was divided into two parts. In Experiment 1 we tested by means of Nerve Excitability Testing (NET) a cohort of female Wistar rats to assess TPM effects after a single OHP administration (5 mg/kg, iv). In Experiment 2 we assessed TPM effects after chronic OHP treatment (5 mg/kg, 2qw4ws, iv) using NET, nerve conduction studies (NCS), behavioral tests and neuropathology (caudal nerve morphometry and morphology and Intraepidermal Nerve Fiber [IENF] density). In Experiment 1 TPM was able to prevent OHP effects on Na + VOC: OHP treatment induced a highly significant reduction of the sensory nerve's threshold, during the superexcitability period (p-value = 0.008), whereas TPM co-administration prevented this effect. In Experiment 2 we verified that TPM was able to prevent not only acute phenomena, but also to completely prevent chronic OIPN. This latter observation was supported by a multimodal approach: in fact, only OHP group showed altered findings compared to CTRL group at a neurophysiological (proximal caudal nerve sensory nerve action potential [SNAP] amplitude, p-value = 0.001; distal caudal nerve SNAP amplitude, p-value<0.001, distal caudal nerve sensory conduction velocity, p-value = 0.04), behavioral (mechanical threshold, p-value 0.003) and neuropathological levels (caudal nerve fibers density, p-value 0.001; IENF density, p-value <0.001). Our data show that TPM is a promising drug to prevent both acute and chronic OIPN. These findings have a high translational potential, since they were obtained using outcome measures that match clinical practice and TPM is already approved for clinical use being free from detrimental interaction with OHP anticancer properties.


Assuntos
Antineoplásicos/toxicidade , Axônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Síndromes Neurotóxicas/prevenção & controle , Oxaliplatina/antagonistas & inibidores , Oxaliplatina/toxicidade , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/prevenção & controle , Topiramato/farmacologia , Animais , Feminino , Condução Nervosa/efeitos dos fármacos , Medição da Dor , Ratos , Ratos Wistar
15.
Sci Rep ; 9(1): 16693, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31723148

RESUMO

Oxygen diffusion across the air-blood barrier in the lung is commensurate with metabolic needs and ideally allows full equilibration between alveolar and blood partial oxygen pressures. We estimated the alveolo-capillary O2 equilibration in 18 healthy subjects at sea level at rest and after exposure to increased O2 demand, including work at sea level and on hypobaric hypoxia exposure at 3840 m (PA ~ 50 mmHg). For each subject we estimated O2 diffusion capacity (DO2), pulmonary capillary blood volume (Vc) and cardiac output ([Formula: see text]). We derived blood capillary transit time [Formula: see text] and the time constant of the equilibration process ([Formula: see text], ß being the slope of the hemoglobin dissociation curve). O2 equilibration at the arterial end of the pulmonary capillary was defined as [Formula: see text]. Leq greately differed among subjects in the most demanding O2 condition (work in hypoxia): lack of full equilibration was found to range from 5 to 42% of the alveolo-capillary PO2 gradient at the venous end. The present analysis proves to be sensible enough to highlight inter-individual differences in alveolo-capillary equilibration among healthy subjects.


Assuntos
Barreira Alveolocapilar/fisiopatologia , Exercício Físico , Hipóxia/fisiopatologia , Consumo de Oxigênio , Oxigênio/sangue , Capacidade de Difusão Pulmonar , Adulto , Débito Cardíaco , Feminino , Voluntários Saudáveis , Humanos , Masculino , Ventilação Pulmonar
16.
Int J Mol Sci ; 20(11)2019 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-31181746

RESUMO

Exposure to ultrafine particles (UFPs) leads to adverse effects on health caused by an unbalanced ratio between UFPs deposition and clearance efficacy. Since air pollution toxicity is first direct to cardiorespiratory system, we compared the acute and sub-acute effects of diesel exhaust particles (DEP) and biomass burning-derived particles (BB) on bronchoalveolar Lavage Fluid (BALf), lung and heart parenchyma. Markers of cytotoxicity, oxidative stress and inflammation were analysed in male BALB/c mice submitted to single and repeated intra-tracheal instillations of 50 µg UFPs. This in-vivo study showed the activation of inflammatory response (COX-2 and MPO) after exposure to UFPs, both in respiratory and cardiovascular systems. Exposure to DEP results also in pro- and anti-oxidant (HO-1, iNOS, Cyp1b1, Hsp70) protein levels increase, although, stress persist only in cardiac tissue under repeated instillations. Statistical correlations suggest that stress marker variation was probably due to soluble components and/or mediators translocation of from first deposition site. This mechanism, appears more important after repeated instillations, since inflammation and oxidative stress endure only in heart. In summary, chemical composition of UFPs influenced the activation of different responses mediated by their components or pro-inflammatory and pro-oxidative molecules, indicating DEP as the most damaging pollutant in the comparison.


Assuntos
Exposição por Inalação/efeitos adversos , Material Particulado/toxicidade , Emissões de Veículos/toxicidade , Animais , Biomarcadores/análise , Líquido da Lavagem Broncoalveolar/química , Ciclo-Oxigenase 2/análise , Citocromo P-450 CYP1B1/análise , Proteínas de Choque Térmico HSP70/análise , Heme Oxigenase-1/análise , Inflamação/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo II/análise
17.
J Clin Invest ; 129(6): 2390-2403, 2019 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-31063986

RESUMO

A disintegrine and metalloproteinase 10 (ADAM10) is implicated in synaptic function through its interaction with postsynaptic receptors and adhesion molecules. Here, we report that levels of active ADAM10 are increased in Huntington's disease (HD) mouse cortices and striata and in human postmortem caudate. We show that, in the presence of polyglutamine-expanded (polyQ-expanded) huntingtin (HTT), ADAM10 accumulates at the postsynaptic densities (PSDs) and causes excessive cleavage of the synaptic protein N-cadherin (N-CAD). This aberrant phenotype is also detected in neurons from HD patients where it can be reverted by selective silencing of mutant HTT. Consistently, ex vivo delivery of an ADAM10 synthetic inhibitor reduces N-CAD proteolysis and corrects electrophysiological alterations in striatal medium-sized spiny neurons (MSNs) of 2 HD mouse models. Moreover, we show that heterozygous conditional deletion of ADAM10 or delivery of a competitive TAT-Pro-ADAM10709-729 peptide in R6/2 mice prevents N-CAD proteolysis and ameliorates cognitive deficits in the mice. Reduction in synapse loss was also found in R6/2 mice conditionally deleted for ADAM10. Taken together, these results point to a detrimental role of hyperactive ADAM10 at the HD synapse and provide preclinical evidence of the therapeutic potential of ADAM10 inhibition in HD.


Assuntos
Proteína ADAM10/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Disfunção Cognitiva/enzimologia , Doença de Huntington/enzimologia , Proteínas de Membrana/metabolismo , Densidade Pós-Sináptica/enzimologia , Proteína ADAM10/genética , Adulto , Idoso , Secretases da Proteína Precursora do Amiloide/genética , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Caderinas/genética , Caderinas/metabolismo , Disfunção Cognitiva/genética , Disfunção Cognitiva/patologia , Modelos Animais de Doenças , Feminino , Células HEK293 , Humanos , Doença de Huntington/genética , Doença de Huntington/patologia , Masculino , Proteínas de Membrana/genética , Camundongos Transgênicos , Pessoa de Meia-Idade , Densidade Pós-Sináptica/genética , Densidade Pós-Sináptica/patologia
18.
J Cell Physiol ; 234(4): 4540-4562, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30191989

RESUMO

Basal forebrain neurons control cerebral blood flow (CBF) by releasing acetylcholine (Ach), which binds to endothelial muscarinic receptors to induce nitric (NO) release and vasodilation in intraparenchymal arterioles. Nevertheless, the mechanism whereby Ach stimulates human brain microvascular endothelial cells to produce NO is still unknown. Herein, we sought to assess whether Ach stimulates NO production in a Ca2+ -dependent manner in hCMEC/D3 cells, a widespread model of human brain microvascular endothelial cells. Ach induced a dose-dependent increase in intracellular Ca2+ concentration ([Ca2+ ]i ) that was prevented by the genetic blockade of M5 muscarinic receptors (M5-mAchRs), which was the only mAchR isoform coupled to phospholipase Cß (PLCß) present in hCMEC/D3 cells. A comprehensive real-time polymerase chain reaction analysis revealed the expression of the transcripts encoding for type 3 inositol-1,4,5-trisphosphate receptors (InsP3 R3), two-pore channels 1 and 2 (TPC1-2), Stim2, Orai1-3. Pharmacological manipulation showed that the Ca2+ response to Ach was mediated by InsP3 R3, TPC1-2, and store-operated Ca2+ entry (SOCE). Ach-induced NO release, in turn, was inhibited in cells deficient of M5-mAchRs. Likewise, Ach failed to increase NO levels in the presence of l-NAME, a selective NOS inhibitor, or BAPTA, a membrane-permeant intracellular Ca2+ buffer. Moreover, the pharmacological blockade of the Ca2+ response to Ach also inhibited the accompanying NO production. These data demonstrate for the first time that synaptically released Ach may trigger NO release in human brain microvascular endothelial cells by stimulating a Ca2+ signal via M5-mAchRs.


Assuntos
Acetilcolina/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Microvasos/efeitos dos fármacos , Agonistas Muscarínicos/farmacologia , Acoplamento Neurovascular/efeitos dos fármacos , Óxido Nítrico/metabolismo , Prosencéfalo/irrigação sanguínea , Receptor Muscarínico M5/agonistas , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Canais de Cálcio Ativados pela Liberação de Cálcio/genética , Canais de Cálcio Ativados pela Liberação de Cálcio/metabolismo , Células Cultivadas , Células Endoteliais/metabolismo , Humanos , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Microvasos/metabolismo , Receptor Muscarínico M5/genética , Receptor Muscarínico M5/metabolismo , Molécula 2 de Interação Estromal/genética , Molécula 2 de Interação Estromal/metabolismo , Transmissão Sináptica
19.
J Cell Physiol ; 234(4): 3538-3554, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30451297

RESUMO

The neurotransmitter glutamate increases cerebral blood flow by activating postsynaptic neurons and presynaptic glial cells within the neurovascular unit. Glutamate does so by causing an increase in intracellular Ca2+ concentration ([Ca2+ ]i ) in the target cells, which activates the Ca2+ /Calmodulin-dependent nitric oxide (NO) synthase to release NO. It is unclear whether brain endothelial cells also sense glutamate through an elevation in [Ca2+ ]i and NO production. The current study assessed whether and how glutamate drives Ca2+ -dependent NO release in bEND5 cells, an established model of brain endothelial cells. We found that glutamate induced a dose-dependent oscillatory increase in [Ca2+ ]i , which was maximally activated at 200 µM and inhibited by α-methyl-4-carboxyphenylglycine, a selective blocker of Group 1 metabotropic glutamate receptors. Glutamate-induced intracellular Ca2+ oscillations were triggered by rhythmic endogenous Ca2+ mobilization and maintained over time by extracellular Ca2+ entry. Pharmacological manipulation revealed that glutamate-induced endogenous Ca2+ release was mediated by InsP3 -sensitive receptors and nicotinic acid adenine dinucleotide phosphate (NAADP) gated two-pore channel 1. Constitutive store-operated Ca2+ entry mediated Ca2+ entry during ongoing Ca2+ oscillations. Finally, glutamate evoked a robust, although delayed increase in NO levels, which was blocked by pharmacologically inhibition of the accompanying intracellular Ca2+ signals. Of note, glutamate induced Ca2+ -dependent NO release also in hCMEC/D3 cells, an established model of human brain microvascular endothelial cells. This investigation demonstrates for the first time that metabotropic glutamate-induced intracellular Ca2+ oscillations and NO release have the potential to impact on neurovascular coupling in the brain.


Assuntos
Encéfalo/irrigação sanguínea , Sinalização do Cálcio/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Ácido Glutâmico/farmacologia , Inositol 1,4,5-Trifosfato/metabolismo , NADP/análogos & derivados , Acoplamento Neurovascular/efeitos dos fármacos , Óxido Nítrico/metabolismo , Animais , Canais de Cálcio/metabolismo , Linhagem Celular , Relação Dose-Resposta a Droga , Células Endoteliais/metabolismo , Humanos , Camundongos , NADP/metabolismo , Receptores de Glutamato Metabotrópico/agonistas , Fatores de Tempo
20.
Eur J Pharm Biopharm ; 133: 309-320, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30399400

RESUMO

The brain as a target for drug delivery is a challenge in pharmaceutical research. Among the several proposed strategies, the intranasal route represents a good strategy to deliver drugs to the brain. The goal of this study was to investigate the potential use of oxcarbazepine (OXC) to enhance brain targeting efficiency after intranasal (IN) administration. As well as attempting to use as low a dose as possible to obtain therapeutic effect. Our results showed that, after IN administrations, the dose of OXC that was effective in controlling epileptic seizures was 0.5 mg/kg (1 dose, every 20 min for 1 h) in rodents, confirmed by Cerebral Spinal Fluid (CSF) bioavailability. With the aim of reducing the number of administrations, sustaining drug release and increasing brain targeting, OXC was loaded into poly(lactide-co-glycolide) (PLGA) nanoparticles (NPs). The selected nanoformulation for in vivo studies was obtained re-suspending the freeze-dried and cryo-protected OXC loaded PLGA NPs. The translocation of 1-1'-Dioctadecyl-3,3,3',3'-tetramethylindotricarbocyanine Iodide loaded PLGA NPs, from nose to the brain, was confirmed by Fluorescence Molecular Tomography, which also evidenced an accumulation of NPs in the brain after repeated IN administrations. IN administrations of OXC loaded PLGA NPs reduced the number of administrations to 1 over 24 h compared to the free drug thus controlling seizures in rats. Immunohistochemical evaluations (anti-neurofilament, anti-beta tubulin, and anti-caspase3) demonstrated a neuroprotective effect of OXC PLGA NPs after 16 days of treatment. These encouraging results confirmed the possibility of developing a novel non-invasive nose to brain delivery system of OXC for the treatment of epilepsy.


Assuntos
Nanopartículas/química , Oxcarbazepina/administração & dosagem , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Convulsões/tratamento farmacológico , Administração Intranasal/métodos , Animais , Encéfalo/efeitos dos fármacos , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Masculino , Camundongos , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/química , Oxcarbazepina/química , Ratos , Ratos Wistar , Roedores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA