Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Appl Biomech ; 39(3): 204-208, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37160289

RESUMO

The aim of this study was to test and adapt a treadmill-developed method for determination of inner-cycle parameters and sub-technique in cross-country roller ski skating for a field application. The method is based on detecting initial and final ground contact of poles and skis during cyclic movements. Eleven athletes skied 4 laps of 2.5 km at low- and high-endurance intensities, using 2 types of skis with different rolling coefficients. Participants were equipped with inertial measurement units attached to their wrists and skis, and insoles with pressure sensors and poles with force measurements were used as reference systems. The method based on inertial measurement units was able to detect >97% of the temporal events detected with the reference system. The inner-cycle temporal parameters had a precision ranging from 49 to 59 milliseconds, corresponding to 3.9% to 13.7% of the corresponding inner-cycle duration. Overall, this study showed good reliability of using inertial measurement units on athletes' wrists and skis to determine temporal events, inner-cycle parameters, and the performed sub-techniques in cross-country roller ski skating in field conditions.


Assuntos
Patinação , Esqui , Humanos , Reprodutibilidade dos Testes , Consumo de Oxigênio , Teste de Esforço , Fenômenos Biomecânicos
2.
Front Sports Act Living ; 4: 1094254, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36704262

RESUMO

Introduction: Although five of six Olympic events in cross-country skiing involve mass-starts, those events are sparsely examined scientifically. Therefore, in this study, we investigated speed profiles, pacing strategies, group dynamics and their performance-determining impact in a cross-country skiing mass-start competition. Methods: Continuous speed and position of 57 male skiers was measured in a six-lap, 21.8 km national mass-start competition in skating style and later followed up with an online questionnaire. Skiers ranked from 1 to 40 were split into four performance-groups: R1-10 for ranks 1 to 10, R11-20 for ranks 11 to 20, R21-30 for ranks 21 to 30, and R31-40 for ranks 31 to 40. Results: All skiers moved together in one large pack for 2.3 km, after which lower-performing skiers gradually lost the leader pack and formed small, dynamic packs. A considerable accordion effect occurred during the first half of the competition that lead to additional decelerations and accelerations and a higher risk of incidents that disadvantaged skiers at the back of the pack. Overall, 31% of the skiers reported incidents, but none were in R1-10. The overall trend was that lap speed decreased after Lap 1 for all skiers and thereafter remained nearly unchanged for R1-10, while it gradually decreased for the lower-performing groups. Skiers in R31-40, R21-30, and R11-20 lost the leader pack during Lap 3, Lap 4, and Lap 5, respectively, and more than 60% of the time-loss relative to the leader pack occurred in the uphill terrain sections. Ultimately, skiers in R1-10 sprinted for the win during the last 1.2 km, in which 2.4 s separated the top five skiers, and a photo finish differentiated first from second place. Overall, a high correlation emerged between starting position and final rank. Conclusions: Our results suggest that (a) an adequate starting position, (b) the ability to avoid incidents and disadvantages from the accordion effect, (c) tolerate fluctuations in intensity, and (d) maintain speed throughout the competition, particularly in uphill terrain, as well as (e) having well-developed final sprint abilities, are key factors determining performance during skating-style mass-start cross-country skiing competitions.

3.
Front Sports Act Living ; 3: 695052, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34308347

RESUMO

The purposes of this study were: 1) to investigate the anaerobic energy contribution during a simulated cross-country (XC) skiing mass-start competition while roller-ski skating on a treadmill; 2) to investigate the relationship between the recovery of the anaerobic energy reserves and performance; and 3) to compare the gross efficiency (GE) method and maximal accumulated oxygen deficit (MAOD) to determine the anaerobic contribution. Twelve male XC skiers performed two testing days while roller skiing on a treadmill. To collect submaximal data necessary for the GE and MAOD method, participants performed a resting metabolism measurement, followed by low-intensity warm up, 12 submaximal 4-min bouts, performed using three different skating sub-techniques (G2 on a 12% incline, G3 on 5% and G4 on 2%) on three submaximal intensities on day 1. On day 2, participants performed a 21-min simulated mass-start competition on varying terrain to determine the anaerobic energy contribution. The speed was fixed, but when participants were unable to keep up, a 30-s rest bout was included. Performance was established by the time to exhaustion (TTE) during a sprint at the end of the 21-min protocol. Skiers were ranked based on the number of rest bouts needed to finish the protocol and TTE. The highest GE of day 1 for each of the different inclines/sub-techniques was used to calculate the aerobic and anaerobic contribution during the simulated mass start using the GE method and two different MAOD approaches. About 85-90% of the required energy during the simulated mass-start competition (excluding downhill segments) came from the aerobic energy system and ~10-15% from the anaerobic energy systems. Moderate to large Spearman correlation coefficients were found between recovery of anaerobic energy reserves and performance rank (r s = 0.58-0.71, p < 0.025). No significant difference in anaerobic work was found between methods/approaches (F (1.2,8.5) = 3.2, p = 0.10), while clear individual differences existed. In conclusion, about 10-15% of the required energy during the periods of active propulsion of a 21-min simulated mass-start competition came from the anaerobic energy systems. Due to the intermittent nature of XC skiing, the recovery of anaerobic energy reserves seems highly important for performance. To assess the anaerobic contribution methods should not be used interchangeably.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA