Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Heliyon ; 9(12): e23110, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38076110

RESUMO

Improved fertilizer management, with a combination of organic and inorganic inputs, has the potential to enhance rice yield while maintaining soil health. However, studies on the effects of broadcast prilled urea (PU) and urea deep placement (UDP) applied in combination with organic inputs (poultry litter [PL] and vermicompost [VC]), as integrated plant nutrition systems (IPNSs), on rice yields and nitrogen use efficiency (NUE) under alternate wetting and drying (AWD) irrigation are limited. We conducted field experiments during the dry and wet seasons of 2018, 2019, and 2020 to investigate the effects of fertilizer treatments, including control (no nitrogen), UDP, PU, and IPNSs (PU + VC, PU + PL, and UDP + PL) on rice yield and NUE under two irrigation regimes - AWD and continuous flooding (CF). The results revealed that fertilizer treatment and irrigation regime had significant (p < 0.05) interaction effects on rice yield and the agronomic efficiency of N (AEN) during the dry season. UDP significantly (p < 0.05) boosted rice yield, total dry matter (TDM), and NUE as compared to broadcast PU in both wet and dry seasons. Similarly, the IPNS treatment of UDP with PL significantly (p < 0.05) boosted rice yield, TDM, and NUE in comparison to broadcast PU. Under AWD irrigation, UDP alone produced higher rice yields than other treatments, while UDP, and UDP with PL produced similar yields under CF irrigation. During the dry season, AWD irrigation significantly (p < 0.05) increased rice yield, TDM, and AEN when compared to CF conditions, but during the wet season, AWD irrigation demonstrated a rice yield and NUE equivalent to CF. This research implies that using a UDP alone or in combination with PL as an IPNS could be a good way to boost crop productivity while also maintaining soil fertility.

2.
JCO Precis Oncol ; 7: e2200351, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36724411

RESUMO

PURPOSE: Adjuvant imatinib treatment is recommended for patients with localized gastrointestinal stromal tumor (GIST) at high risk of recurrence. Almost half of high-risk patients are cured by surgery alone, indicating a need for improved selection of patients for adjuvant therapy. The aim of this study was to investigate if genomic tumor complexity could be used as a prognostic biomarker. METHODS: The discovery cohort consisted of patients who underwent resection of primary GIST at Oslo University Hospital between 1998 and 2020. Karyotypes were categorized as simple if they had ≤ 5 chromosomal changes and complex if there were > 5 chromosomal aberrations. Validation was performed in an independent patient cohort where chromosomal imbalances were mapped using comparative genomic hybridization. RESULTS: Chromosomal aberrations were detected in 206 tumors, of which 76 had a complex karyotype. The most frequently observed changes were losses at 14q, 22q, 1p, and 15q. The 5-year recurrence-free survival (RFS) in patients classified as very low, low, or intermediate risk was 99%. High-risk patients with a simple tumor karyotype had an estimated 5-year RFS of 94%, and patients with a complex karyotype had an estimated 5-year RFS of 51%. A complex karyotype was associated with poor RFS in patients with and without adjuvant imatinib treatment and in multivariable analysis adjusted for tumor site, size, mitotic count, and rupture. The prognostic impact of genomic complexity was confirmed in the validation cohort. In both cohorts, the 5-year disease-specific survival was > 90% for high-risk patients with genomically simple tumors. CONCLUSION: Genomic tumor complexity is an independent prognostic biomarker in localized, high-risk GIST. Recurrences were infrequent for tumors with simple karyotypes. De-escalation of adjuvant imatinib treatment should be explored in patients with cytogenetically simple GISTs.


Assuntos
Antineoplásicos , Tumores do Estroma Gastrointestinal , Humanos , Mesilato de Imatinib/uso terapêutico , Tumores do Estroma Gastrointestinal/tratamento farmacológico , Tumores do Estroma Gastrointestinal/genética , Hibridização Genômica Comparativa , Quimioterapia Adjuvante , Biomarcadores , Genômica , Aberrações Cromossômicas/induzido quimicamente
3.
Mol Biotechnol ; 64(12): 1319-1327, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35610404

RESUMO

The tripartite partition defect (PAR) polarity complex, which includes the proteins PAR3, atypical protein kinase C (aPKC), and PAR6, is a major regulator of cellular polarity. It is highly conserved and expressed in various tissues. Its largest component, PAR3, controls protein-protein interactions of the PAR complex with a variety of interaction partners, and PAR3 self-association is critical for the formation of filament-like structures. However, little is known about the structure of the PAR complex. Here, we purified non-filamentous PAR3 and the aPKC-PAR6 complex and characterized them by single-particle electron microscopy (EM). We expressed and purified an oligomerization-deficient form of PAR3, PAR3V13D,D70K, and the active aPKC-PAR6 dimer. For PAR3, engineering at two positions is sufficient to form stable single particles with a maximum dimension of 20 nm. aPKC-PAR6 forms a complex with a maximum dimension of 13.5 nm that contains single copies of aPKC. Thus, the data present a basis for further high-resolution studies of PAR proteins and PAR complex formation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteína Quinase C , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Polaridade Celular , Humanos , Proteína Quinase C/genética , Proteína Quinase C/metabolismo
4.
Sci Rep ; 12(1): 401, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013482

RESUMO

Overuse of seed and chemical inputs is a major constraint for sustainable rice production in Vietnam. In this study, two seasons of field trials were conducted to compare different crop establishment practices for rice production in the Mekong River Delta using environmental and economic sustainability performance indicators. The indicators including energy efficiency, agronomic use efficiency, net income, and greenhouse gas emissions (GHGEs) were quantified based on four treatments including manual broadcast-seeding, blower seeding, drum seeding, and mechanized transplanting. Across the four treatments, yields ranged from 7.3-7.5 Mg ha-1 and 6.2-6.8 Mg ha-1 in the Winter-Spring (WS) and Summer-Autumn (SA) seasons, respectively. In comparison with direct seeding methods, mechanized transplanting decreased the seed rate by 40%. It also led to a 30-40% reduction in pesticide use during the main crop season (WS). Mechanized transplanting required higher inputs, including machine depreciation and fuel consumption, but its net energy balance, net income and GHGE were at a similar level as the other non-mechanized planting practices. Mechanized transplanting is a technology package that should be promoted to improve the economic and environmental sustainability of lowland rice cultivation in the Mekong River Delta of Vietnam.

5.
J Environ Manage ; 307: 114520, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35066193

RESUMO

Greenhouse gas (GHG) emissions from agriculture sector play an important role for global warming and climate change. Thus, it is necessary to find out GHG emissions mitigation strategies from rice cultivation. The efficient management of nitrogen fertilizer using urea deep placement (UDP) and the use of the water-saving alternate wetting and drying (AWD) irrigation could mitigate greenhouse gas (GHG) emissions and reduce environmental pollution. However, there is a dearth of studies on the impacts of UDP and the integrated plant nutrient system (IPNS) which combines poultry manure and prilled urea (PU) with different irrigation regimes on GHG emissions, nitrogen use efficiency (NUE) and rice yields. We conducted field experiments during the dry seasons of 2018, 2019, and 2020 to compare the effects of four fertilizer treatments including control (no N), PU, UDP, and IPNS in combination with two irrigation systems- (AWD and continuous flooding, CF) on GHG emissions, NUE and rice yield. Fertilizer treatments had significant (p < 0.05) interaction effects with irrigation regimes on methane (CH4) and nitrous oxide (N2O) emissions. PU reduced CH4 and N2O emissions by 6% and 20% compared to IPNS treatment, respectively under AWD irrigation, but produced similar emissions under CF irrigation. Similarly, UDP reduced cumulative CH4 emissions by 9% and 15% under AWD irrigation, and 9% and 11% under CF condition compared to PU and IPNS treatments, respectively. Across the year and fertilizer treatments, AWD irrigation significantly (p < 0.05) reduced cumulative CH4 emissions and GHG intensity by 28%, and 26%, respectively without significant yield loss compared to CF condition. Although AWD irrigation increased cumulative N2O emissions by 73%, it reduced the total global warming potential by 27% compared to CF irrigation. The CH4 emission factor for AWD was lower (1.67 kg ha-1 day-1) compared to CF (2.33 kg ha-1 day-1). Across the irrigation regimes, UDP increased rice yield by 21% and N recovery efficiency by 58% compared to PU. These results suggest that both UDP and AWD irrigation might be considered as a carbon-friendly technology.


Assuntos
Gases de Efeito Estufa , Oryza , Agricultura , Fertilizantes/análise , Gases de Efeito Estufa/análise , Metano/análise , Óxido Nitroso/análise , Solo , Água , Abastecimento de Água
6.
Colorectal Dis ; 24(2): 157-176, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34623739

RESUMO

AIM: Colorectal carcinomas (CRCs) progress through heterogeneous pathways. The aim of this study was to analyse whether or not the cytogenetic evolution of CRC is linked to tumour site, level of chromosomal imbalance and metastasis. METHOD: A set of therapy-naïve pT3 CRCs comprising 26 proximal and 49 distal pT3 CRCs was studied by combining immunohistochemistry of mismatch repair (MMR) proteins, microsatellite analyses and molecular karyotyping as well as clinical parameters. RESULTS: A MMR deficient/microsatellite-unstable (dMMR/MSI-H) status was associated with location of the primary tumour proximal to the splenic flexure, and dMMR/MSI-H tumours presented with significantly lower levels of chromosomal imbalances compared with MMR proficient/microsatellite-stable (pMMR/MSS) tumours. Oncogenetic tree modelling suggested two evolutionary clusters characterized by dMMR/MSI-H and chromosomal instability (CIN), respectively, for both proximal and distal CRCs. In CIN cases, +13q, -18q and +20q were predicted as preferentially early events, and -1p, -4 -and -5q as late events. Separate oncogenetic tree models of proximal and distal cases indicated similar early events independent of tumour site. However, in cases with high CIN defined by more than 10 copy number aberrations, loss of 17p occurred earlier in cytogenetic evolution than in cases showing low to moderate CIN. Differences in the oncogenetic trees were observed for CRCs with lymph node and distant metastasis. Loss of 8p was modelled as an early event in node-positive CRC, while +7p and +8q comprised early events in CRC with distant metastasis. CONCLUSION: CRCs characterized by CIN follow multiple, interconnected genetic pathways in line with the basic 'Vogelgram' concept proposed for the progression of CRC that places the accumulation of genetic changes at centre of tumour evolution. However, the timing of specific genetic events may favour metastatic potential.


Assuntos
Neoplasias Colorretais , Reparo de Erro de Pareamento de DNA , Neoplasias Encefálicas , Instabilidade Cromossômica , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Reparo de Erro de Pareamento de DNA/genética , Humanos , Instabilidade de Microssatélites , Síndromes Neoplásicas Hereditárias
7.
Mol Biotechnol ; 63(1): 53-62, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33130996

RESUMO

The repressor element 1 (RE1) silencing transcription factor/neuron-restrictive silencing factor (REST/NRSF) modulates the expression of genes with RE1/neuron-restrictive silencing element (RE1/NRSE) sites by recruiting the switch independent 3 (SIN3) factor and the REST corepressor (COREST) to its N and C-terminal repressor domain, respectively. Both, SIN3 and COREST assemble into protein complexes that are composed of multiple subunits including a druggable histone deacetylase (HDAC) enzyme. The SIN3 core complex comprises the eponymous proteins SIN3A or SIN3B, the catalytically active proteins HDAC1 or HDAC2, the histone chaperone retinoblastoma-associated protein 46/retinoblastoma-binding protein 7 (RBAP46/RBBP7) or RBAP48/RBBP4, the SIN3-associated protein 30 (SAP30), and the suppressor of defective silencing 3 (SDS3). Here, we overcome a bottleneck limiting the molecular characterization of the REST/NRSF-SIN3 transcriptional corepressor complex. To this end, SIN3 genes were amplified from the complementary DNA of neural stem/progenitor cells, and expressed in a baculovirus/insect cell expression system. We show that the isolates bind to DNA harboring RE1/NRSE sites and demonstrate that the histone deacetylase activity is blocked by small-molecule inhibitors. Thus, our isolates open up for future biomedical research on this critical transcriptional repressor complex and are envisioned as tool for drug testing.


Assuntos
Proteínas Correpressoras/genética , Inibidores de Histona Desacetilases/farmacologia , Proteínas do Tecido Nervoso/genética , Células-Tronco Neurais/metabolismo , Proteínas Repressoras/genética , Complexo Correpressor Histona Desacetilase e Sin3/genética , Complexo Correpressor Histona Desacetilase e Sin3/isolamento & purificação , Animais , Baculoviridae/metabolismo , Benzamidas/farmacologia , Proteínas Correpressoras/isolamento & purificação , Proteínas Correpressoras/metabolismo , Depsipeptídeos/farmacologia , Biblioteca Gênica , Histona Desacetilases/metabolismo , Humanos , Proteínas do Tecido Nervoso/isolamento & purificação , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/enzimologia , Pirimidinas/farmacologia , Proteínas Recombinantes , Elementos Reguladores de Transcrição/genética , Proteínas Repressoras/isolamento & purificação , Proteínas Repressoras/metabolismo , Células Sf9 , Complexo Correpressor Histona Desacetilase e Sin3/metabolismo
8.
Sci Total Environ ; 739: 140215, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32758960

RESUMO

Rice production systems are the largest anthropogenic wetlands on earth and feed more than half of the world's population. However, they are also a major source of global anthropogenic greenhouse gas (GHG) emissions. Several agronomic strategies have been proposed to improve water-use efficiency and reduce GHG emissions. The aim of this study was to evaluate the impact of water-saving irrigation (alternate wetting and drying (AWD) vs. soil water potential (SWP)), contrasting land establishment (puddling vs. reduced tillage) and fertiliser application methods (broadcast vs. liquid fertilisation) on water-use efficiency, GHG emissions and rice yield. The experiment was laid out in a randomised complete block design with eight treatments (all combinations of the three factors) and four replicates. AWD combined with broadcasting fertilisation was superior to SWP in terms of maintaining yield. However, seasonal nitrous oxide (N2O) emissions were significantly reduced by 64% and 66% in the Broadcast-SWP and Liquid fertiliser-SWP treatments, respectively, compared to corresponding treatments in AWD. The SWP also significantly reduced seasonal methane (CH4) emissions by 34 and 30% in the broadcast and liquid fertilisation treatments, respectively. Area-scaled GWPs were reduced by 48% and 54% in Broadcast-SWP and Liquid fertiliser-SWP treatments respectively compared to the corresponding treatments in AWD. Compared to AWD, the broadcast and liquid fertilisation in SWP irrigation treatments reduced yield-scaled GWPs by 46% and 37%, respectively. In terms of suitability, based on yield-scaled GWPs, the treatments can be ordered as follows: Broadcast-SWP < Broadcast-AWD = Liquid fertiliser-SWP < Liquid fertiliser-AWD. Growing-season water use was 15% lower in the SWP treatments compared with the water-saving AWD. Reduced tillage reduced additional water use during land preparation. The conclusions of this study are that improved water management and timely coordination of N fertiliser with crop demand can reduce water use, N loss via N2O emissions, and CH4 emissions.

9.
Mod Pathol ; 33(12): 2483-2498, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32572153

RESUMO

Loss of E-cadherin expression due to mutation of the CDH1 gene is a characteristic feature of invasive lobular breast cancer (ILBC). Beta-catenin, which binds to the cytoplasmic domain of E-cadherin, is simultaneously downregulated, reflecting disassembly of adherens junctions (AJs) and loss of cell adhesion. E-cadherin to P-cadherin expression switching can rescue AJs and cell adhesion. However, P-cadherin has not been implicated in ILBC, so far. We aimed to characterize 13 ILBCs with exceptional histomorphology, which we termed ILBCs with tubular elements. The CDH1 mutational status was determined by next generation sequencing and whole-genome copy number (CN) profiling. Expression of cadherins was assessed by immunohistochemistry. ILBCs with tubular elements were ER-positive (13/13) and HER2-negative (13/13) and harbored deleterious CDH1 mutations (11/13) accompanied by loss of heterozygosity due to deletion of chromosome 16q22.1 (9/11). E-cadherin expression was lost or reduced in noncohesive tumor cells and in admixed tubular elements (13/13). Beta-catenin expression was lost in noncohesive tumor cells, but was retained in tubular elements (11/13), indicating focal rescue of AJ formation. N-cadherin and R-cadherin were always negative (0/13). Strikingly, P-cadherin was commonly positive (12/13) and immunoreactivity was accentuated in tubular elements. Adjacent lobular carcinoma in situ (LCIS) was always P-cadherin-negative (0/7). In a reference cohort of LCIS specimens, P-cadherin was constantly not expressed (0/25). In a reference cohort of invasive mammary carcinomas, P-cadherin-positive cases (36/268, 13%) were associated with triple-negative nonlobular breast cancer (P < 0.001). Compared with ILBCs from the reference cohort, P-cadherin expression was more common in ILBCs with tubular elements (12/13 versus 7/84, P < 0.001). In summary, E-cadherin to P-cadherin switching occurs in a subset of ILBCs. P-cadherin is the molecular determinant of a mixed-appearing histomorphology in ILBCs with tubular elements.


Assuntos
Antígenos CD/análise , Biomarcadores Tumorais/análise , Neoplasias da Mama/química , Caderinas/análise , Carcinoma Lobular/química , Adulto , Idoso , Antígenos CD/genética , Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Caderinas/genética , Carcinoma Lobular/genética , Carcinoma Lobular/patologia , Variações do Número de Cópias de DNA , Análise Mutacional de DNA , Feminino , Dosagem de Genes , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Perda de Heterozigosidade , Pessoa de Meia-Idade , Mutação , RNA-Seq
10.
Sci Total Environ ; 734: 139382, 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32460078

RESUMO

Alternate wetting and drying (AWD) irrigation in lowland rice cultivation increases water use efficiency and could reduce greenhouse gas (GHG) emissions compared to the farmers' practice of continuous flooding (CF). However, there is a dearth of studies on the impacts of water management on methane (CH4) and nitrous oxide (N2O) emissions in Bangladesh. Multi-location field experiments were conducted during the dry seasons of 2018 and 2019 to determine the baseline emissions of CH4 and N2O from rice fields and compare the emissions from AWD irrigation and CF. CH4 and N2O emissions were measured using the closed chamber technique and their concentrations were determined using a gas chromatograph. CH4 and N2O emissions varied across water management schemes and sites. AWD irrigation significantly (p < 0.05) reduced cumulative CH4 emissions (37%, average across sites) without affecting grain yields compared to CF. The CH4 emission factor for AWD was lower (1.39 kg ha-1 day-1) compared to CF (2.21 kg ha-1 day-1). Although AWD irrigation increased seasonal cumulative N2O emissions by 46%, it did not offset reduced CH4 emissions. AWD reduced the total global warming potential (GWP) by 36% compared to CF. Similarly, GHG intensity (GHGI) in AWD was 34% smaller compared to that in CF. Emissions varied across sites and the magnitudes of seasonal cumulative CH4 and N2O emissions were higher at the Gazipur site compared to the Mymensingh site. AWD, which saves irrigation water without any yield penalty, could be considered a promising strategy to mitigate GHG emissions from rice fields in Bangladesh.

11.
Eur J Surg Oncol ; 46(1): 180-188, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31431322

RESUMO

BACKGROUND: Gastrointestinal stromal tumors (GIST) are the most frequent mesenchymal neoplasms of the gastrointestinal tract with highly variable potential for relapse. Tumor size and mitotic index (MI) are major risk factors that predict the outcome of GIST patients. Recent risk stratification schemes include some or all of the empirical size thresholds of 2 cm, 5 cm, and 10 cm and MI thresholds of 5 per 50 high-power fields (hpf) and 10 per 50 hpf. However, data that verify these numbers are sparse. METHODS: By exhaustive regression tree analysis, maximally selected rank statistics and survival difference analysis with bootstrap sampling on a naive GIST population of 161 patients with a mean follow-up of 44 months, current stratification schemes using tumor size and MI were analyzed herein. RESULTS: /Conclusions: Thresholds that optimally stratify the risk of recurrence are observed at tumor sizes of 4-5 cm and 10-11 cm and at mitotic indices of about 5 per 50 hpf and 10 per 50 hpf, respectively. While these data validate the canonical thresholds for size and MI used in risk stratification of GIST, transition regions as well as differences in the implementation of these thresholds between the different classification schemes proposed in the recent years should be considered when classifying GIST.


Assuntos
Tumores do Estroma Gastrointestinal/patologia , Tumores do Estroma Gastrointestinal/cirurgia , Recidiva Local de Neoplasia/patologia , Medição de Risco/métodos , Feminino , Tumores do Estroma Gastrointestinal/mortalidade , Humanos , Masculino , Índice Mitótico , Prognóstico , Fatores de Risco , Análise de Sobrevida , Carga Tumoral
12.
Sci Rep ; 9(1): 16887, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31729404

RESUMO

The research provided scientific evidences for improved rice straw management. Rice cultivation with in-field burning of rice straw is the worst option with the lowest energy efficiency and highest air pollution emission. This article comprises a comparative assessment of energy efficiency and the environmental footprint of rice production using four different rice straw management scenarios, namely, straw retained, straw burned, partial straw removal, and complete straw removal. Paddy yield, grain quality, and energy balance were assessed for two seasons while greenhouse gas emissions (GHGE) were measured weekly starting from land preparation through to the cropping and fallow period. Despite the added energy requirements in straw collection and transport, the use of collected rice straw for mushroom production can increase the net energy obtained from rice production systems by 10-15% compared to burning straw in the field. Partial and complete removal of rice straw reduces GHGE by 30% and 40% compared to complete straw retention, respectively.


Assuntos
Irrigação Agrícola/métodos , Agricultura/métodos , Pegada de Carbono , Conservação de Recursos Energéticos/métodos , Meio Ambiente , Oryza/crescimento & desenvolvimento , Irrigação Agrícola/normas , Biomassa , Conservação dos Recursos Hídricos/métodos , Metabolismo Energético , Gases de Efeito Estufa , Metano/análise , Óxido Nitroso/análise , Oryza/química , Oryza/metabolismo , Estações do Ano , Solo/química
13.
Anal Biochem ; 587: 113418, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31520595

RESUMO

The repressor element 1-silencing transcription factor/neuron-restrictive silencer factor (REST/NRSF) binds to repressor element 1/neuron-restrictive silencer element (RE1/NRSE) sites in the genome and recruits effector proteins to repress its target genes. Here, we developed the FlpTRAP system to isolate endogenously assembled DNA-protein complexes such as the REST/NRSF complex. In the FlpTRAP system, we take advantage of the step-arrest variant of the Flp recombinase, FlpH305L, which, in the presence of Flp recognition target (FRT) DNA, accumulates as FRT DNA-protein adduct. The FlpTRAP system consists of three elements: (i) FlpH305L-containing cell extracts or isolates, (ii) a cell line engineered to harbor the DNA motif of interest flanked by FRT sites, and (iii) affinity selection steps to isolate the target chromatin. Specifically, 3×FLAG-tagged FlpH305L was expressed in insect cell cultures infected with baculovirus, and cell lysates were prepared. The lysate was used to capture the FRT-SNAP25 RE1/NRSE-FRT chromatin from a human medulloblastoma cell line, and the target RE1/NRSE chromatin was isolated by anti-FLAG immunoaffinity chromatography. Using electrophoretic mobility shift assays (EMSAs) and chromatin immunopurification (ChIP), we show that FlpH305L recognized and bound to the FRT sites. Overall, we suggest the FlpTRAP system as a tool to purify endogenous, specific chromatin loci from eukaryotic cells.


Assuntos
Cromatina/isolamento & purificação , DNA Nucleotidiltransferases/química , Cromatina/química , Cromatina/metabolismo , DNA Nucleotidiltransferases/metabolismo , Humanos
14.
Mol Cell Biochem ; 461(1-2): 171-182, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31428904

RESUMO

The BAF complex (SWI/SNF) is an ATP-dependent chromatin remodeler that adapts the structural organization of the chromatin. Despite a growing understanding of the composition of BAF in different cell types, the interaction network within the BAF complex is poorly understood. Here, we characterized an isoform of the BRG1/SMARCA4 ATPase expressed in human neural progenitor cells. By electron microscopy and image processing, the neural BRG1/SMARCA4 shows an elongated globular structure, which provides a considerably larger surface than anticipated. We show that neural BRG1/SMARCA4 binds to BAF57/SMARCE1 and BAF60A/SMARCD1, two further components of BAF. Moreover, we demonstrate an interaction between the neural BRG1/SMARCA4 isoform and the central neurodevelopmental transcriptional repressor REST/NRSF. Our results provide insights into the assembly of a central transcriptional repressor complex, link the structure of the neural BRG1/SMARCA4 to its role as a protein-protein interaction platform and suggest BRG1/SMARCA4 as a key determinant that directs the BAF complex to specific DNA sites by interacting with transcription factors and regulators.


Assuntos
DNA Helicases/metabolismo , Células-Tronco Neurais/metabolismo , Proteínas Nucleares/metabolismo , Subunidades Proteicas/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Proteínas Cromossômicas não Histona/metabolismo , DNA Helicases/química , Proteínas de Ligação a DNA/metabolismo , Humanos , Modelos Biológicos , Proteínas Nucleares/química , Ligação Proteica , Domínios Proteicos , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Fatores de Transcrição/química
16.
Mol Biotechnol ; 60(11): 820-832, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30178299

RESUMO

The human tumor suppressor SMARCB1/INI1/SNF5/BAF47 (SNF5) is a core subunit of the multi-subunit ATP-dependent chromatin remodeling complex SWI/SNF, also known as Brahma/Brahma-related gene 1 (BRM/BRG1)-associated factor (BAF). Experimental studies of SWI/SNF are currently considerably limited by the low cellular abundance of this complex; thus, recombinant protein production represents a key to obtain the SWI/SNF proteins for molecular and structural studies. While the expression of mammalian proteins in bacteria is often difficult, the baculovirus/insect cell expression system can overcome limitations of prokaryotic expression systems and facilitate the co-expression of multiple proteins. Here, we demonstrate that human full-length SNF5 tagged with a C-terminal 3 × FLAG can be expressed and purified from insect cell extracts in monomeric and dimeric forms. To this end, we constructed a set of donor and acceptor vectors for the expression of individual proteins and protein complexes in the baculovirus/insect cell expression system under the control of a polyhedrin (polh), p10, or a minimal Drosophila melanogaster Hsp70 promoter. We show that the SNF5 expression level could be modulated by the selection of the promoter used to control expression. The vector set also comprises vectors that encode a 3 × FLAG tag, Twin-Strep tag, or CBP-3 × FLAG-TEV-ProteinA triple tag to facilitate affinity selection and detection. By gel filtration and split-ubiquitin assays, we show that human full-length SNF5 has the ability to self-interact. Overall, the toolbox developed herein offers the possibility to flexibly select the promoter strength as well as the affinity tag and is suggested to advance the recombinant expression of chromatin remodeling factors and other challenging proteins.


Assuntos
Baculoviridae/crescimento & desenvolvimento , Proteínas de Choque Térmico HSP70/genética , Proteína SMARCB1/genética , Células Sf9/virologia , Animais , Baculoviridae/genética , Linhagem Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Expressão Gênica , Humanos , Regiões Promotoras Genéticas , Engenharia de Proteínas , Técnicas do Sistema de Duplo-Híbrido
17.
J Environ Manage ; 225: 168-176, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30119009

RESUMO

Water drainage is an important mitigation option for reducing CH4 (methane) emissions from residue-amended paddy soils. Several studies have indicated a long-term reduction in CH4 emissions, even after re-flooding, suggesting that the mechanism goes beyond creating temporary oxidized conditions in the soil. In this pot trial, the effects of different drainage patterns on straw-derived CH4 and CO2 (carbon dioxide) emissions were compared to identify the balance between straw-carbon CH4 and CO2 emissions influenced by soil aeration over different periods, including effects of drainage on emissions during re-flooding. The water treatments included were: continuous flooding [C] as the control and five drainage patterns (pre-planting drainage [P], early-season drainage [E], midseason drainage [M], pre-planting plus midseason drainage [PM], early-season-plus-midseason drainage [EM]). An equal amount of 13C-enriched rice straw was applied to all treatments to identify straw-derived 13C-gas emissions from soil carbon derived emissions. The highest fluxes of CH4 and δ13C-CH4 were recorded from the control treatment in the first week after straw application. The CH4 flux and δ13C-CH4 were reduced the most (0.1-0.8 µg CH4 g-1 soil day-1 and -13 to -34‰) in the pre-planting and pre-planting plus midseason drainage treatments at day one after transplanting. Total and straw-derived CH4 emissions were reduced by 69% and 78% in pre-planting drainage and 77% and 87% in pre-planting plus midseason drainage respectively, compared to control. The early-season, midseason, pre-planting plus midseason and early-season-plus-midseason drainage treatments resulted in higher total and straw-derived CO2 emissions compared to the control and pre-planting drainage treatments. The pre-planting and pre-planting plus midseason drainage treatments lowered the global warming potential by 47-53%, and early-season and early-season-plus-midseason drainage treatments reduced it by 24-31% compared to control. By using labelled crop residues, this experiment demonstrates a direct link between early drainage and reduced CH4 emissions from incorporated crop residues, eventually leading to a reduction in total global warming potential. It is suggested that accelerated decomposition of the residues during early season drainage prolonged the reduction in CH4 emissions. Therefore, it is important to introduce the early drainage as an effective measure to mitigate CH4 emissions from crop residues.


Assuntos
Aquecimento Global , Metano/análise , Solo/química , Agricultura , Carbono , Dióxido de Carbono , Óxido Nitroso , Oryza , Estações do Ano
18.
Cell Mol Life Sci ; 75(16): 3009-3026, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29445841

RESUMO

The pyruvate dehydrogenase complex (PDC) bridges glycolysis and the citric acid cycle. In human, PDC deficiency leads to severe neurodevelopmental delay and progressive neurodegeneration. The majority of cases are caused by variants in the gene encoding the PDC subunit E1α. The molecular effects of the variants, however, remain poorly understood. Using yeast as a eukaryotic model system, we have studied the substitutions A189V, M230V, and R322C in yeast E1α (corresponding to the pathogenic variants A169V, M210V, and R302C in human E1α) and evaluated how substitutions of single amino acid residues within different functional E1α regions affect PDC structure and activity. The E1α A189V substitution located in the heterodimer interface showed a more compact conformation with significant underrepresentation of E1 in PDC and impaired overall PDC activity. The E1α M230V substitution located in the tetramer and heterodimer interface showed a relatively more open conformation and was particularly affected by low thiamin pyrophosphate concentrations. The E1α R322C substitution located in the phosphorylation loop of E1α resulted in PDC lacking E3 subunits and abolished overall functional activity. Furthermore, we show for the E1α variant A189V that variant E1α accumulates in the Hsp60 chaperonin, but can be released upon ATP supplementation. Our studies suggest that pathogenic E1α variants may be associated with structural changes of PDC and impaired folding of E1α.


Assuntos
Substituição de Aminoácidos , Piruvato Desidrogenase (Lipoamida)/genética , Doença da Deficiência do Complexo de Piruvato Desidrogenase/genética , Complexo Piruvato Desidrogenase/genética , Proteínas de Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Microscopia Confocal , Dobramento de Proteína , Piruvato Desidrogenase (Lipoamida)/química , Piruvato Desidrogenase (Lipoamida)/metabolismo , Complexo Piruvato Desidrogenase/química , Complexo Piruvato Desidrogenase/metabolismo , Doença da Deficiência do Complexo de Piruvato Desidrogenase/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos
19.
PLoS One ; 13(2): e0191352, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29390000

RESUMO

This study comprises field experiments on methane emissions from rice fields conducted with an Eddy-Covariance (EC) system as well as test runs for a modified closed chamber approach based on measurements at nighttime. The EC data set covers 4 cropping seasons with highly resolved emission rates (raw data in 10 Hz frequency have been aggregated to 30-min records). The diel patterns were very pronounced in the two dry seasons with peak emissions at early afternoon and low emissions at nighttime. These diel patterns were observed at all growing stages of the dry seasons. In the two wet seasons, the diel patterns were only visible during the vegetative stages while emission rates during reproductive and ripening stages remained within a fairly steady range and did not show any diel patterns. In totality, however, the data set revealed a very strong linear relationship between nocturnal emissions (12-h periods) and the full 24-h periods resulting in an R2-value of 0.8419 for all data points. In the second experiment, we conducted test runs for chamber measurements at nighttime with much longer deployment times (6 h) as compared to measurements at daylight (typically for 30 min). Conducting chamber measurements at nighttime excluded drastic changes of temperatures and CO2 concentrations. The data also shows that increases in CH4 concentrations remained on linear trajectory over a 6h period at night. While end CH4 concentrations were consistently >3.5 ppm, this long-term enclosure represents a very robust approach to quantify emissions as compared to assessing short-term concentration increases over time near the analytical detection limit. Finally, we have discussed the potential applications of this new approach that would allow emission measurements even when conventional (daytime) measurements will not be suitable. Nighttime chamber measurements offer an alternative to conventional (daytime) measurements if either (i) baseline emissions are at a very low level, (ii) differences of tested crop treatments or varieties are very small or (iii) the objective is to screen a large number of rice varieties for taking advantage of progress in genome sequencing.


Assuntos
Poluentes Atmosféricos/análise , Dióxido de Carbono/análise , Monitoramento Ambiental/métodos , Metano/análise , Oryza/crescimento & desenvolvimento , Estações do Ano , Temperatura
20.
Am J Physiol Regul Integr Comp Physiol ; 314(1): R84-R93, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28877869

RESUMO

The ability of many reptilian hemoglobins (Hbs) to form high-molecular weight polymers, albeit known for decades, has not been investigated in detail. Given that turtle Hbs often contain a high number of cysteine (Cys), potentially contributing to the red blood cell defense against reactive oxygen species, we have examined whether polymerization of Hb could occur via intermolecular disulfide bonds in red blood cells of freshwater turtle Trachemys scripta, a species that is highly tolerant of hypoxia and oxidative stress. We find that one of the two Hb isoforms of the hemolysate HbA is prone to polymerization in vitro into linear flexible chains of different size that are visible by electron microscopy but not the HbD isoform. Polymerization of purified HbA is favored by hydrogen peroxide, a main cellular reactive oxygen species and a thiol oxidant, and inhibited by thiol reduction and alkylation, indicating that HbA polymerization is due to disulfide bonds. By using mass spectrometry, we identify Cys5 of the αA-subunit of HbA as specifically responsible for forming disulfide bonds between adjacent HbA tetramers. Polymerization of HbA does not affect oxygen affinity, cooperativity, and sensitivity to the allosteric cofactor ATP, indicating that HbA is still fully functional. Polymers also form in T. scripta blood after exposure to anoxia but not normoxia, indicating that they are of physiological relevance. Taken together, these results show that HbA polymers may form during oxidative stress and that Cys5αA of HbA is a key element of the antioxidant capacity of turtle red blood cells.


Assuntos
Proteínas de Anfíbios/sangue , Antioxidantes/metabolismo , Dissulfetos/sangue , Hemoglobina A/metabolismo , Hipóxia/sangue , Estresse Oxidativo , Oxigênio/sangue , Tartarugas/sangue , Adaptação Fisiológica , Animais , Biomarcadores/sangue , Cisteína , Hipóxia/fisiopatologia , Polimerização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA