Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Appl Phys Lett ; 122(25): 251105, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37362153

RESUMO

High harmonic generation (HHG) in semiconductors has been extensively studied recently in the high-intensity limit using middle infrared (mid-IR) femtosecond laser pulses resulting in emission spectra of self-phase modulated harmonics resting on top of a broadband continuum. In this report, a different approach to HHG in polycrystalline zinc selenide (poly-ZnSe) was explored utilizing a relatively low power regime (1-40 GW/cm2) and much longer (30 ps) mid-IR laser pulses. Through a combination of low power, picosecond excitation, and narrowband (<10 nm full width at half maximum) mid-IR excitation, the nonlinear optical effects in poly-ZnSe could be isolated and studied independently. From the clearly distinguishable HHG peaks, harmonic conversion efficiencies of 10-4-10-12 for second to ninth harmonic in poly-ZnSe were measured, and the relationship between the Nth harmonic intensity and excitation intensity (I0) was found to follow a power law, I0x with x ≤ N/2, as a result of the random quasi-phase matching process.

2.
Opt Express ; 27(24): 36011-36021, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31878765

RESUMO

In this work, we present the first demonstration of a quasi-continuous-wave diode-pumped metastable xenon laser at atmospheric pressures. Lasing in metastable noble gas species has received increased attention in the last few years as a possible high-power laser source. This demonstration shows that metastable xenon has a sufficiently broad absorption spectrum to be pumped with a broad-bandwidth diode laser. This implies that a high-power metastable xenon gas laser should be achievable using high-power pump diodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA