Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 562(7727): 406-409, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30333580

RESUMO

The efficiency of generating electricity from heat using concentrated solar power plants (which use mirrors or lenses to concentrate sunlight in order to drive heat engines, usually involving turbines) may be appreciably increased by operating with higher turbine inlet temperatures, but this would require improved heat exchanger materials. By operating turbines with inlet temperatures above 1,023 kelvin using closed-cycle high-pressure supercritical carbon dioxide (sCO2) recompression cycles, instead of using conventional (such as subcritical steam Rankine) cycles with inlet temperatures below 823 kelvin1-3, the relative heat-to-electricity conversion efficiency may be increased by more than 20 per cent. The resulting reduction in the cost of dispatchable electricity from concentrated solar power plants (coupled with thermal energy storage4-6) would be an important step towards direct competition with fossil-fuel-based plants and a large reduction in greenhouse gas emissions7. However, the inlet temperatures of closed-cycle high-pressure sCO2 turbine systems are limited8 by the thermomechanical performance of the compact, metal-alloy-based, printed-circuit-type heat exchangers used to transfer heat to sCO2. Here we present a robust composite of ceramic (zirconium carbide, ZrC) and the refractory metal tungsten (W) for use in printed-circuit-type heat exchangers at temperatures above 1,023 kelvin9. This composite has attractive high-temperature thermal, mechanical and chemical properties and can be processed in a cost-effective manner. We fabricated ZrC/W-based heat exchanger plates with tunable channel patterns by the shape-and-size-preserving chemical conversion of porous tungsten carbide plates. The dense ZrC/W-based composites exhibited failure strengths of over 350 megapascals at 1,073 kelvin, and thermal conductivity values two to three times greater than those of iron- or nickel-based alloys at this temperature. Corrosion resistance to sCO2 at 1,023 kelvin and 20 megapascals was achieved10 by bonding a copper layer to the composite surface and adding 50 parts per million carbon monoxide to sCO2. Techno-economic analyses indicate that ZrC/W-based heat exchangers can strongly outperform nickel-superalloy-based printed-circuit heat exchangers at lower cost.

2.
Dent Mater ; 34(4): 619-628, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29395473

RESUMO

BACKGROUND: Periodontitis is an infectious/inflammatory disease most often diagnosed by deepening of the gingival sulcus, which leads to periodontal pockets (PPs) conventional manual periodontal probing does not provide detailed information on the three-dimensional (3-D) nature of PPs. OBJECTIVES: To determine whether accurate 3-D analyses of the depths and volumes of calibrated PP analogues (PPAs) can be obtained by conventional cone beam computed tomography (CBCT) coupled with novel radiopaque micro-particle fillers (described in the companion paper) injected into the PPAs. METHODS: Two PPA models were employed: (1) a human skull model with artificial gingiva applied to teeth with alveolar bone loss and calibrated PPAs, and (2) a pig jaw model with alveolar bone loss and surgically-induced PPAs The PPAs were filled with controlled amounts of radiopaque micro-particle filler using volumetric pipetting Inter-method and intra-method agreement tests were then used to compare the PPA depths and volumes obtained from CBCT images with values obtained by masked examiners using calibrated manual methods. RESULTS: Significant inter-method agreement (0.938-0.991) and intra-method agreement (0.94-0.99) were obtained when comparing analog manual data to digital CBCT measurements enabled by the radiopaque filler. SIGNIFICANCE: CBCT imaging with radiopaque micro-particle fillers is a plausible means of visualizing and digitally assessing the depths, volumes, and 3-D shapes of PPs This approach could transform the diagnosis and treatment planning of periodontal disease, with particular initial utility in complex cases Efforts to confirm the clinical practicality of these fillers are currently in progress.


Assuntos
Perda do Osso Alveolar/diagnóstico por imagem , Compostos de Cálcio/química , Tomografia Computadorizada de Feixe Cônico , Meios de Contraste/química , Imageamento Tridimensional , Bolsa Periodontal/diagnóstico por imagem , Compostos de Tungstênio/química , Animais , Humanos , Técnicas In Vitro , Tamanho da Partícula , Suínos
3.
Dent Mater ; 34(4): 569-578, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29287980

RESUMO

OBJECTIVES: Approximately 109 bacteria can be harbored within periodontal pockets (PP) along with inflammatory byproducts implicated in the pathophysiology of systemic diseases linked to periodontitis (PD). Calculation of this inflammatory burden has involved estimation of total pocket surface area using analog data from conventional periodontal probing which is unable to determine the three-dimensional (3-D) nature of PP. The goals of this study are to determine the radiopacity, biocompatibility, and antimicrobial activity of transient micro-particle fillers in vitro and demonstrate their capability for 3-D imaging of artificial PP (U.S. Patent publication number: 9814791 B2). METHODS: Relative radiopacity values of various metal oxide fillers were obtained from conventional radiography and micro-computed tomography (µCT) using in vitro models. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays were used to measure the biocompatibility of calcium tungstate (CaWO4) particles by determination of viable keratinocytes percentage (%) after exposure. After introducing an antibacterial compound (K21) to the radiopaque agent, antimicrobial tests were conducted using Porphyromonas gingivalis (P. gingivalis) and Streptococcus gordonii (S. gordonii) strains and blood agar plates. RESULTS: CaWO4 micro-particle-bearing fillers exhibited an X-ray radiopacity distinct from tooth structures that enabled 3-D visualization of an artificial periodontal pocket created around a human tooth. MTT assays indicated that CaWO4 micro-particles are highly biocompatible (increasing the viability of exposed keratinocytes). Radiopaque micro-particle fillers combined with K21 showed significant antimicrobial activity for P. gingivalis and S. gordonii. SIGNIFICANCE: The plausibility of visualizing PP with 3-D radiographic imaging using new radiopaque, biocompatible, transient fillers was demonstrated in vitro. Antibacterial (or other) agents added to this formula could provide beneficial therapeutic features along with the diagnostic utility.


Assuntos
Anti-Infecciosos/química , Materiais Biocompatíveis/química , Compostos de Cálcio/química , Bolsa Periodontal/diagnóstico por imagem , Compostos de Amônio Quaternário/química , Silanos/química , Compostos de Tungstênio/química , Microtomografia por Raio-X , Humanos , Imageamento Tridimensional , Técnicas In Vitro , Tamanho da Partícula , Bolsa Periodontal/microbiologia , Porphyromonas gingivalis/efeitos dos fármacos , Streptococcus gordonii/efeitos dos fármacos
4.
Nature ; 550(7675): 199-203, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-29022590

RESUMO

Heat is fundamental to power generation and many industrial processes, and is most useful at high temperatures because it can be converted more efficiently to other types of energy. However, efficient transportation, storage and conversion of heat at extreme temperatures (more than about 1,300 kelvin) is impractical for many applications. Liquid metals can be very effective media for transferring heat at high temperatures, but liquid-metal pumping has been limited by the corrosion of metal infrastructures. Here we demonstrate a ceramic, mechanical pump that can be used to continuously circulate liquid tin at temperatures of around 1,473-1,673 kelvin. Our approach to liquid-metal pumping is enabled by the use of ceramics for the mechanical and sealing components, but owing to the brittle nature of ceramics their use requires careful engineering. Our set-up enables effective heat transfer using a liquid at previously unattainable temperatures, and could be used for thermal storage and transport, electric power production, and chemical or materials processing.

5.
Opt Express ; 22(13): 15992-9, 2014 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-24977855

RESUMO

Diatoms are a renewable (biologically reproducible) source of three-dimensional (3-D) nanostructured silica that could be attractive for a variety of photonic devices, owing to the wide range of quasi-periodic patterns of nano-to-microscale pores available on the silica microshells (frustules) of various diatom species. We have investigated the optical behavior of the silica frustule of a centric marine diatom, Coscinodiscus wailesii, using a coherent broadband (400-1700 nm) supercontinuum laser focused to a fine (20 µm diameter) spot. The C. wailesii frustule valve, which possessed a quasi-periodic hexagonal pore array, exhibited position-dependent optical diffraction. Changes in such diffraction behavior across the frustule were consistent with observed variations in the quasi-periodic pore pattern.


Assuntos
Diatomáceas , Luz , Nanoestruturas , Dióxido de Silício/análise , Animais
6.
Chem Commun (Camb) ; (11): 1177-9, 2007 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-17347731

RESUMO

The first use of diatom frustules as shape-dictating 3-D templates for the syntheses of nanostructured, nanocrystalline micro-particles of a non-oxide ceramic, boron nitride, is demonstrated.

7.
J Nanosci Nanotechnol ; 5(1): 63-7, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15762162

RESUMO

A novel biosynthetic paradigm is introduced for fabricating three-dimensional (3-D) ceramic nanoparticle assemblies with tailored shapes and tailored chemistries: biosculpting and shape-preserving inorganic conversion (BaSIC). Biosculpting refers to the use of biomolecules that direct the precipitation of ceramic nanoparticles to form a continuous 3-D structure with a tailored shape. We used a peptide derived from a diatom (a type of unicellular algae) to biosculpt silica nanoparticle based assemblies that, in turn, were converted into a new (nonsilica) composition via a shape-preserving gas/silica displacement reaction. Interwoven, microfilamentary silica structures were prepared by exposing a peptide, derived from the silaffin-1A protein of the diatom Cylindrotheca fusiformis, to a tetramethylorthosilicate solution under a linear shear flow condition. Subsequent exposure of the silica microfilaments to magnesium gas at 900 degrees C resulted in conversion into nanocrystalline magnesium oxide microfilaments with a retention of fine (submicrometer) features. Fluid(gas or liquid)/silica displacement reactions leading to a variety of other oxides have also been identified. This hybrid (biogenic/synthetic) approach opens the door to biosculpted ceramic microcomponents with multifarious tailored shapes and compositions for a wide range of environmental, aerospace, biomedical, chemical, telecommunications, automotive, manufacturing, and defense applications.


Assuntos
Biomimética/métodos , Cristalização/métodos , Diatomáceas/metabolismo , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Proteínas/química , Dióxido de Silício/química , Biomimética/instrumentação , Cerâmica/química , Precipitação Química , Tamanho da Partícula , Peptídeos , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA