Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Appl Physiol (1985) ; 135(1): 205-216, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37262105

RESUMO

This study explored the use of computed cardiopulmonography (CCP) to assess lung function in early-stage cystic fibrosis (CF). CCP has two components. The first is a particularly accurate technique for measuring gas exchange. The second is a computational cardiopulmonary model where patient-specific parameters can be estimated from the measurements of gas exchange. Twenty-five participants (14 healthy controls, 11 early-stage CF) were studied with CCP. They were also studied with a standard clinical protocol to measure the lung clearance index (LCI2.5). Ventilation inhomogeneity, as quantified through CCP parameter σlnCl, was significantly greater (P < 0.005) in CF than in controls, and anatomical deadspace relative to predicted functional residual capacity (DS/FRCpred) was significantly more variable (P < 0.002). Participant-specific parameters were used with the CCP model to calculate idealized values for LCI2.5 (iLCI2.5) where extrapulmonary influences on the LCI2.5, such as breathing pattern, had all been standardized. Both LCI2.5 and iLCI2.5 distinguished clearly between CF and control participants. LCI2.5 values were mostly higher than iLCI2.5 values in a manner dependent on the participant's respiratory rate (r = 0.46, P < 0.05). The within-participant reproducibility for iLCI2.5 appeared better than for LCI2.5, but this did not reach statistical significance (F ratio = 2.2, P = 0.056). Both a sensitivity analysis on iLCI2.5 and a regression analysis on LCI2.5 revealed that these depended primarily on an interactive term between CCP parameters of the form σlnCL*(DS/FRC). In conclusion, the LCI2.5 (or iLCI2.5) probably reflects an amalgam of different underlying lung changes in early-stage CF that would require a multiparameter approach, such as potentially CCP, to resolve.NEW & NOTEWORTHY Computed cardiopulmonography is a new technique comprising a highly accurate sensor for measuring respiratory gas exchange coupled with a cardiopulmonary model that is used to identify a set of patient-specific characteristics of the lung. Here, we show that this technique can improve on a standard clinical approach for lung function testing in cystic fibrosis. Most particularly, an approach incorporating multiple model parameters can potentially separate different aspects of pathological change in this disease.


Assuntos
Fibrose Cística , Humanos , Reprodutibilidade dos Testes , Testes de Função Respiratória/métodos , Pulmão , Respiração
2.
J Appl Physiol (1985) ; 133(5): 1175-1191, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36173325

RESUMO

The longer-term effects of COVID-19 on lung physiology remain poorly understood. Here, a new technique, computed cardiopulmonography (CCP), was used to study two COVID-19 cohorts (MCOVID and C-MORE-LP) at both ∼6 and ∼12 mo after infection. CCP is comprised of two components. The first is collection of highly precise, highly time-resolved measurements of gas exchange with a purpose-built molecular flow sensor based around laser absorption spectroscopy. The second component is estimation of physiological parameters by fitting a cardiopulmonary model to the data set. The measurement protocol involved 7 min of breathing air followed by 5 min of breathing pure O2. One hundred seventy-eight participants were studied, with 97 returning for a repeat assessment. One hundred twenty-six arterial blood gas samples were drawn from MCOVID participants. For participants who had required intensive care and/or invasive mechanical ventilation, there was a significant increase in anatomical dead space of ∼30 mL and a significant increase in alveolar-to-arterial Po2 gradient of ∼0.9 kPa relative to control participants. Those who had been hospitalized had reductions in functional residual capacity of ∼15%. Irrespectively of COVID-19 severity, participants who had had COVID-19 demonstrated a modest increase in ventilation inhomogeneity, broadly equivalent to that associated with 15 yr of aging. This study illustrates the capability of CCP to study aspects of lung function not so easily addressed through standard clinical lung function tests. However, without measurements before infection, it is not possible to conclude whether the findings relate to the effects of COVID-19 or whether they constitute risk factors for more serious disease.NEW & NOTEWORTHY This study used a novel technique, computed cardiopulmonography, to study the lungs of patients who have had COVID-19. Depending on severity of infection, there were increases in anatomical dead space, reductions in absolute lung volumes, and increases in ventilation inhomogeneity broadly equivalent to those associated with 15 yr of aging. However, without measurements taken before infection, it is unclear whether the changes result from COVID-19 infection or are risk factors for more severe disease.


Assuntos
COVID-19 , Humanos , Testes de Função Respiratória , Respiração Artificial , Pulmão , Respiração
3.
ERJ Open Res ; 7(2)2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33898618

RESUMO

BACKGROUND: Multiple-breath washout techniques are increasingly used to assess lung function. The principal statistic obtained is the lung clearance index (LCI), but values obtained for LCI using the nitrogen (N2)-washout technique are higher than those obtained using an exogenous tracer gas such as sulfur hexafluoride. This study explored whether the pure oxygen (O2) used for the N2 washout could underlie these higher values. METHODS: A model of a homogenous, reciprocally ventilated acinus was constructed. Perfusion was kept constant, and ventilation adjusted by varying the swept volume during the breathing cycle. The blood supplying the acinus had a standard mixed-venous composition. Carbon dioxide and O2 exchange between the blood and acinar gas proceeded to equilibrium. The model was initialised with either air or air plus tracer gas as the inspirate. Washouts were conducted with pure O2 for the N2 washout or with air for the tracer gas washout. RESULTS: At normal ventilation/perfusion (V'/Q') ratios, the rate of washout of N2 and exogenous tracer gas was almost indistinguishable. At low V'/Q', the N2 washout lagged the tracer gas washout. At very low V'/Q', N2 became trapped in the acinus. Under low V'/Q' conditions, breathing pure O2 introduced a marked asymmetry between the inspiratory and expiratory gas flow rates that was not present when breathing air. DISCUSSION: The use of pure O2 to washout N2 increases O2 uptake in low V'/Q' units. This generates a background gas flow into the acinus that opposes flow out of the acinus during expiration, and so delays the washout of N2.

4.
Sci Rep ; 11(1): 5252, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33664377

RESUMO

Respiratory approaches to determining cardiac output in humans are securely rooted in mass balance and therefore potentially highly accurate. To address existing limitations in the gas analysis, we developed an in-airway analyser based on laser absorption spectroscopy to provide analyses every 10 ms. The technique for estimating cardiac output requires both a relatively soluble and insoluble tracer gas, and we employed acetylene and methane for these, respectively. A multipass cell was used to provide sufficient measurement sensitivity to enable analysis directly within the main gas stream, thus avoiding errors introduced by sidestream gas analysis. To assess performance, measurements of cardiac output were made during both rest and exercise on five successive days in each of six volunteers. The measurements were extremely repeatable (coefficient of variation ~ 7%). This new measurement technology provides a stable foundation against which the algorithm to calculate cardiac output can be further developed.


Assuntos
Débito Cardíaco/fisiologia , Respiração , Sistema Respiratório/diagnóstico por imagem , Análise Espectral/métodos , Exercício Físico/fisiologia , Humanos , Lasers , Consumo de Oxigênio/fisiologia , Descanso , Tórax/diagnóstico por imagem , Tórax/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA