Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Nat Commun ; 15(1): 2758, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553439

RESUMO

Hospital surfaces can harbour bacterial pathogens, which may disseminate and cause nosocomial infections, contributing towards mortality in low- and middle-income countries (LMICs). During the BARNARDS study, hospital surfaces from neonatal wards were sampled to assess the degree of environmental surface and patient care equipment colonisation by Gram-negative bacteria (GNB) carrying antibiotic resistance genes (ARGs). Here, we perform PCR screening for extended-spectrum ß-lactamases (blaCTX-M-15) and carbapenemases (blaNDM, blaOXA-48-like and blaKPC), MALDI-TOF MS identification of GNB carrying ARGs, and further analysis by whole genome sequencing of bacterial isolates. We determine presence of consistently dominant clones and their relatedness to strains causing neonatal sepsis. Higher prevalence of carbapenemases is observed in Pakistan, Bangladesh, and Ethiopia, compared to other countries, and are mostly found in surfaces near the sink drain. Klebsiella pneumoniae, Enterobacter hormaechei, Acinetobacter baumannii, Serratia marcescens and Leclercia adecarboxylata are dominant; ST15 K. pneumoniae is identified from the same ward on multiple occasions suggesting clonal persistence within the same environment, and is found to be identical to isolates causing neonatal sepsis in Pakistan over similar time periods. Our data suggests persistence of dominant clones across multiple time points, highlighting the need for assessment of Infection Prevention and Control guidelines.


Assuntos
Países em Desenvolvimento , Sepse Neonatal , Recém-Nascido , Humanos , beta-Lactamases/genética , Proteínas de Bactérias/genética , Hospitais , Antibacterianos/farmacologia , Klebsiella pneumoniae/genética , Bactérias Gram-Negativas/genética , Testes de Sensibilidade Microbiana
2.
Emerg Microbes Infect ; 12(2): 2278899, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37929689

RESUMO

Exchange of antimicrobial resistance genes via mobile genetic elements occur in the gut which can be transferred from mother to neonate during birth. This study is the first to analyse transmissible colistin resistance gene, mcr, in pregnant mothers and neonates. Samples were collected from pregnant mothers (rectal) and septicaemic neonates (rectal and blood) and analysed for the presence of mcr, its transmissibility, genome diversity, and exchange of mcr between isolates within an individual and across different individuals (not necessarily mother-baby pairs). mcr-1.1 was detected in rectal samples of pregnant mothers (n = 10, 0.9%), but not in neonates. All mcr-positive mothers gave birth to healthy neonates from whom rectal specimen were not collected. Hence, the transmission of mcr between these mother-neonate pairs could not be studied. mcr-1.1 was noted only in Escherichia coli (phylogroup A & B1), and carried few resistance and virulence genes. Isolates belonged to diverse sequence types (n = 11) with two novel STs (ST12452, ST12455). mcr-1.1 was borne on conjugative IncHI2 bracketed between ISApl1 on Tn6630, and the plasmids exhibited similarities in sequences across the study isolates. Phylogenetic comparison showed that study isolates were related to mcr-positive isolates of animal origin from Southeast Asian countries. Spread of mcr-1.1 within this study occurred either via similar mcr-positive clones or similar mcr-bearing plasmids in mothers. Though this study could not build evidence for mother-baby transmission but the presence of such genes in the maternal specimen may enhance the chances of transmission to neonates.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Animais , Recém-Nascido , Feminino , Humanos , Gravidez , Antibacterianos/farmacologia , Proteínas de Escherichia coli/genética , Filogenia , Mães , Colistina , Plasmídeos/genética , Farmacorresistência Bacteriana/genética , Testes de Sensibilidade Microbiana
3.
Microbiol Spectr ; 11(4): e0521522, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37367488

RESUMO

Longitudinal studies of extraintestinal pathogenic Escherichia coli (ExPEC) and epidemic clones of E. coli in association with New Delhi metallo-ß-lactamase (blaNDM) in septicaemic neonates are rare. This study captured the diversity of 80 E. coli isolates collected from septicaemic neonates in terms of antibiotic susceptibility, resistome, phylogroups, sequence types (ST), virulome, plasmids, and integron types over a decade (2009 to 2019). Most of the isolates were multidrug-resistant and, 44% of them were carbapenem-resistant, primarily due to blaNDM. NDM-1 was the sole NDM-variant present in conjugative IncFIA/FIB/FII replicons until 2013, and it was subsequently replaced by other variants, such as NDM-5/-7 found in IncX3/FII. A core genome analysis for blaNDM+ve isolates showed the heterogeneity of the isolates. Fifty percent of the infections were caused by isolates of phylogroups B2 (34%), D (11.25%), and F (4%), whereas the other half were caused by phylogroups A (25%), B1 (11.25%), and C (14%). The isolates were further distributed in approximately 20 clonal complexes (STC), including five epidemic clones (ST131, ST167, ST410, ST648, and ST405). ST167 and ST131 (subclade H30Rx) were dominant, with most of the ST167 being blaNDM+ve and blaCTX-M-15+ve. In contrast, the majority of ST131 isolates were blaNDM-ve but blaCTX-M-15+ve, and they possessed more virulence determinants than did ST167. A single nucleotide polymorphism (SNP)-based comparative genome analysis of epidemic clones ST167 and ST131 in a global context revealed that the study isolates were present in close proximity but were distant from global isolates. The presence of antibiotic-resistant epidemic clones causing sepsis calls for a modification of the recommended antibiotics with which to treat neonatal sepsis. IMPORTANCE Multidrug-resistant and virulent ExPEC causing sepsis in neonates is a challenge to neonatal health. The presence of enzymes, such as carbapenemases (blaNDM) that hydrolyze most ß-lactam antibiotic compounds, result in difficulties when treating neonates. The characterization of ExPECs collected over 10 years showed that 44% of ExPECs were carbapenem-resistant, possessing transmissible blaNDM genes. The isolates belonged to different phylogroups that are considered to be either commensals or virulent. The isolates were distributed in around 20 clonal complexes (STC), including two predominant epidemic clones (ST131 and ST167). ST167 possessed few virulence determinants but was blaNDM+ve. In contrast, ST131 harbored several virulence determinants but was blaNDM-ve. A comparison of the genomes of these epidemic clones in a global context revealed that the study isolates were present in close proximity but were distant from global isolates. The presence of epidemic clones in a vulnerable population with contrasting characteristics and the presence of resistance genes call for strict vigilance.


Assuntos
Infecções por Escherichia coli , Escherichia coli Extraintestinal Patogênica , Sepse , Recém-Nascido , Humanos , Escherichia coli , Infecções por Escherichia coli/epidemiologia , beta-Lactamases/genética , Antibacterianos/farmacologia , Carbapenêmicos , Plasmídeos/genética , Fatores de Virulência/genética , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana Múltipla/genética
5.
PLoS Med ; 20(5): e1004239, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37216371

RESUMO

BACKGROUND: Despite significant global progress in reducing neonatal mortality, bacterial sepsis remains a major cause of neonatal deaths. Klebsiella pneumoniae (K. pneumoniae) is the leading pathogen globally underlying cases of neonatal sepsis and is frequently resistant to antibiotic treatment regimens recommended by the World Health Organization (WHO), including first-line therapy with ampicillin and gentamicin, second-line therapy with amikacin and ceftazidime, and meropenem. Maternal vaccination to prevent neonatal infection could reduce the burden of K. pneumoniae neonatal sepsis in low- and middle-income countries (LMICs), but the potential impact of vaccination remains poorly quantified. We estimated the potential impact of such vaccination on cases and deaths of K. pneumoniae neonatal sepsis and project the global effects of routine immunization of pregnant women with the K. pneumoniae vaccine as antimicrobial resistance (AMR) increases. METHODS AND FINDINGS: We developed a Bayesian mixture-modeling framework to estimate the effects of a hypothetical K. pneumoniae maternal vaccine with 70% efficacy administered with coverage equivalent to that of the maternal tetanus vaccine on neonatal sepsis infections and mortality. To parameterize our model, we used data from 3 global studies of neonatal sepsis and/or mortality-with 2,330 neonates who died with sepsis surveilled from 2016 to 2020 undertaken in 18 mainly LMICs across all WHO regions (Ethiopia, Kenya, Mali, Mozambique, Nigeria, Rwanda, Sierra Leone, South Africa, Uganda, Brazil, Italy, Greece, Pakistan, Bangladesh, India, Thailand, China, and Vietnam). Within these studies, 26.95% of fatal neonatal sepsis cases were culture-positive for K. pneumoniae. We analyzed 9,070 K. pneumoniae genomes from human isolates gathered globally from 2001 to 2020 to quantify the temporal rate of acquisition of AMR genes in K. pneumoniae isolates to predict the future number of drug-resistant cases and deaths that could be averted by vaccination. Resistance rates to carbapenems are increasing most rapidly and 22.43% [95th percentile Bayesian credible interval (CrI): 5.24 to 41.42] of neonatal sepsis deaths are caused by meropenem-resistant K. pneumoniae. Globally, we estimate that maternal vaccination could avert 80,258 [CrI: 18,084 to 189,040] neonatal deaths and 399,015 [CrI: 334,523 to 485,442] neonatal sepsis cases yearly worldwide, accounting for more than 3.40% [CrI: 0.75 to 8.01] of all neonatal deaths. The largest relative benefits are in Africa (Sierra Leone, Mali, Niger) and South-East Asia (Bangladesh) where vaccination could avert over 6% of all neonatal deaths. Nevertheless, our modeling only considers country-level trends in K. pneumoniae neonatal sepsis deaths and is unable to consider within-country variability in bacterial prevalence that may impact the projected burden of sepsis. CONCLUSIONS: A K. pneumoniae maternal vaccine could have widespread, sustained global benefits as AMR in K. pneumoniae continues to increase.


Assuntos
Doenças Transmissíveis , Sepse Neonatal , Morte Perinatal , Sepse , Vacinas , Recém-Nascido , Humanos , Feminino , Gravidez , Sepse Neonatal/epidemiologia , Sepse Neonatal/prevenção & controle , Sepse Neonatal/microbiologia , Klebsiella pneumoniae , Meropeném , Teorema de Bayes , África do Sul
6.
Antibiotics (Basel) ; 12(3)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36978411

RESUMO

Streptococcus agalactiae or group B streptococcus (GBS) is a leading cause of neonatal sepsis and increasingly found as an invasive pathogen in older patient populations. Beta-lactam antibiotics remain the most effective therapeutic with resistance rarely reported, while the majority of GBS isolates carry the tetracycline resistance gene tet(M) in fixed genomic positions amongst five predominant clonal clades. In the UK, GBS resistance to clindamycin and erythromycin has increased from 3% in 1991 to 11.9% (clindamycin) and 20.2% (erythromycin), as reported in this study. Here, a systematic investigation of antimicrobial resistance genomic content sought to fully characterise the associated mobile genetic elements within phenotypically resistant GBS isolates from 193 invasive and non-invasive infections of UK adult patients collected during 2014 and 2015. Resistance to erythromycin and clindamycin was mediated by erm(A) (16/193, 8.2%), erm(B) (16/193, 8.2%), mef(A)/msr(D) (10/193, 5.1%), lsa(C) (3/193, 1.5%), lnu(C) (1/193, 0.5%), and erm(T) (1/193, 0.5%) genes. The integrative conjugative elements (ICEs) carrying these genes were occasionally found in combination with high gentamicin resistance mediating genes aac(6')-aph(2″), aminoglycoside resistance genes (ant(6-Ia), aph(3'-III), and/or aad(E)), alternative tetracycline resistance genes (tet(O) and tet(S)), and/or chloramphenicol resistance gene cat(Q), mediating resistance to multiple classes of antibiotics. This study provides evidence of the retention of previously reported ICESag37 (n = 4), ICESag236 (n = 2), and ICESpy009 (n = 3), as well as the definition of sixteen novel ICEs and three novel transposons within the GBS lineage, with no evidence of horizontal transfer.

7.
Lancet Microbe ; 4(4): e264-e276, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36931291

RESUMO

BACKGROUND: The emergence of colistin-resistant Enterobacterales is a global public health concern, yet colistin is still widely used in animals that are used for food as treatment, metaphylaxis, prophylaxis, and growth promotion. Herein, we investigate the effect of colistin-resistant Enterobacterales in Pakistan, global trade of colistin, colistin use at the farm level, and relevant socioeconomic factors. METHODS: We conducted a microbiological, economic, and anthropological study of colistin-resistant Escherichia coli in humans, animals, and the environment and international trade and knowledge of colistin in Pakistan, Bangladesh, Nigeria, China, India, and Viet Nam. We collected backyard poultry cloacal swabs, commercial broiler cloacal swabs, cattle and buffalo rectal swabs, human rectal swabs, wild bird droppings, cattle and buffalo meat, sewage water, poultry flies, chicken meat, and canal water from 131 sites across Faisalabad, Pakistan, to be tested for mcr-1-positive and mcr-3-positive Escherichia coli. We recruited new patients admitted to Allied Hospital, Faisalabad, Pakistan, with abdominal pain and diarrhoea for rectal swabs. Patients with dysentery and those who were already on antibiotic treatment were excluded. Data for colistin trade between 2017 and 2020, including importation, manufacturing, and usage, were accessed from online databases and government sources in Pakistan, Bangladesh, and Nigeria. We recruited participants from poultry farms and veterinary drug stores in Pakistan and Nigeria to be interviewed using a structured questionnaire. International manufacturing, import, and export data; value analysis; and trade routes of colistin pharmaceutical raw material (PRM), feed additive, and finished pharmaceutical products (FPPs) were accessed from 2017-21 export data sets. FINDINGS: We collected 1131 samples between May 12, 2018, and July 1, 2019: backyard poultry cloacal swabs (n=100), commercial broiler cloacal swabs (n=102), cattle and buffalo rectal swabs (n=188), human rectal swabs (n=200), wild bird droppings (n=100), cattle and buffalo meat (n=100), sewage water (n=90), poultry flies (n=100), chicken meat (n=100), and canal water (n=51). We recruited 200 inpatients at Allied Hospital, Faisalabad, Pakistan, between Nov 15, 2018, and Dec 14, 2018, for rectal swabs. We recruited 21 participants between Jan 1, 2020, and Dec 31, 2020, from poultry farms and drug stores in Pakistan and Nigeria to be interviewed. 75 (7%) of 1131 samples contained mcr-1-positive E coli, including wild bird droppings (25 [25%] of 100), commercial broiler cloacal swabs (17 [17%] of 100), backyard poultry cloacal swabs (one [1%] of 100), chicken meat (13 [13%] of 100), cattle and buffalo meat (two [2%] of 100), poultry flies (eight [8%] of 100), sewage water (six [7%] of 90), and human rectal swabs (three [2%] of 200). During 2017-20, Pakistan imported 275·5 tonnes (68·9 tonnes per year, 95% CI 41·2-96·6) of colistin as PRM, all sourced from China, 701·9 tonnes (175·5 tonnes per year, 140·9-210·1) of colistin as feed additives from China and Viet Nam, and 63·0 tonnes (15·8 tonnes per year, 10·4-21·1) of colistin as FPPs from various countries in Asia and Europe. For Bangladesh and Nigeria, colistin PRM and FPPs were imported from China and Europe. Colistin knowledge and usage practices in Pakistan and Nigeria were unsatisfactory in terms of understanding of the effects on human medicine and usage other than for treatment purposes. China is the major manufacturer of PRM and feed additive colistin and exported a total of 2664·8 tonnes (666·2 tonnes per year, 95% CI 262·1 to 1070·2) of PRM and 2570·2 tonnes (642·6 tonnes per year, -89·4 to 1374·5) of feed additive in 1330 shipments during 2018-21 to 21 countries. INTERPRETATION: Regardless of 193 countries signing the UN agreement to tackle antimicrobial resistance, trading of colistin as PRM, FPPs, and feed additive or growth promoter in low-income and middle-income countries continues unabated. Robust national and international laws are urgently required to mitigate the international trade of this antimicrobial listed on WHO Critically Important Antimicrobials for Human Medicine. FUNDING: Pakistan Agricultural Research Council and INEOS Oxford Institute for Antimicrobial Research TRANSLATION: For the Urdu translation of the abstract see Supplementary Materials section.


Assuntos
Anti-Infecciosos , Proteínas de Escherichia coli , Saúde Única , Bovinos , Animais , Humanos , Colistina/farmacologia , Colistina/uso terapêutico , Escherichia coli , Esgotos , Búfalos , Comércio , Galinhas , Internacionalidade , Aves Domésticas/microbiologia , Anti-Infecciosos/farmacologia , Políticas , Paquistão/epidemiologia , Proteínas de Escherichia coli/farmacologia
8.
Clin Infect Dis ; 76(1): 119-133, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-35412593

RESUMO

SUMMARY: 10.6% patients were CRE positive. Only 27% patients were prescribed at least 1 antibiotic to which infecting pathogen was susceptible. Burn and ICU admission and antibiotics exposures facilitate CRE acquisition. Escherichia coli ST167 was the dominant CRE clone. BACKGROUND: Given the high prevalence of multidrug resistance (MDR) across South Asian (SA) hospitals, we documented the epidemiology of carbapenem-resistant Enterobacterales (CRE) infections at Dhaka Medical College Hospital between October 2016 and September 2017. METHODS: We enrolled patients and collected epidemiology and outcome data. All Enterobacterales were characterized phenotypically and by whole-genome sequencing. Risk assessment for the patients with CRE was performed compared with patients with carbapenem-susceptible Enterobacterales (CSE). RESULTS: 10.6% of all 1831 patients with a clinical specimen collected had CRE. In-hospital 30-day mortality was significantly higher with CRE [50/180 (27.8%)] than CSE [42/312 (13.5%)] (P = .001); however, for bloodstream infections, this was nonsignificant. Of 643 Enterobacterales isolated, 210 were CRE; blaNDM was present in 180 isolates, blaOXA-232 in 26, blaOXA-181 in 24, and blaKPC-2 in 5. Despite this, ceftriaxone was the most commonly prescribed empirical antibiotic and only 27% of patients were prescribed at least 1 antibiotic to which their infecting pathogen was susceptible. Significant risk factors for CRE isolation included burns unit and intensive care unit admission, and prior exposure to levofloxacin, amikacin, clindamycin, and meropenem. Escherichia coli ST167 was the dominant CRE clone. Clustering suggested clonal transmission of Klebsiella pneumoniae ST15 and the MDR hypervirulent clone, ST23. The major trajectories involved in horizontal gene transfer were IncFII and IncX3, IS26, and Tn3. CONCLUSIONS: This is the largest study from an SA public hospital combining outcome, microbiology, and genomics. The findings indicate the urgent implementation of targeted diagnostics, appropriate antibiotic use, and infection-control interventions in SA public institutions.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Infecções por Enterobacteriaceae , Humanos , Infecções por Enterobacteriaceae/tratamento farmacológico , Infecções por Enterobacteriaceae/epidemiologia , Infecções por Enterobacteriaceae/microbiologia , Ásia Meridional , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , beta-Lactamases/genética , Testes de Sensibilidade Microbiana , Bangladesh , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Carbapenêmicos/farmacologia , Carbapenêmicos/uso terapêutico , Escherichia coli/genética , Klebsiella pneumoniae/genética , Genômica
9.
BMC Infect Dis ; 22(1): 593, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35790903

RESUMO

BACKGROUND: In low- and middle-income countries (LMIC) Staphylococcus aureus is regarded as one of the leading bacterial causes of neonatal sepsis, however there is limited knowledge on the species diversity and antimicrobial resistance caused by Gram-positive bacteria (GPB). METHODS: We characterised GPB isolates from neonatal blood cultures from LMICs in Africa (Ethiopia, Nigeria, Rwanda, and South Africa) and South-Asia (Bangladesh and Pakistan) between 2015-2017. We determined minimum inhibitory concentrations and performed whole genome sequencing (WGS) on Staphylococci isolates recovered and clinical data collected related to the onset of sepsis and the outcome of the neonate up to 60 days of age. RESULTS: From the isolates recovered from blood cultures, Staphylococci species were most frequently identified. Out of 100 S. aureus isolates sequenced, 18 different sequence types (ST) were found which unveiled two small epidemiological clusters caused by methicillin resistant S. aureus (MRSA) in Pakistan (ST8) and South Africa (ST5), both with high mortality (n = 6/17). One-third of S. aureus was MRSA, with methicillin resistance also detected in Staphylococcus epidermidis, Staphylococcus haemolyticus and Mammaliicoccus sciuri. Through additional WGS analysis we report a cluster of M. sciuri in Pakistan identified between July-November 2017. CONCLUSIONS: In total we identified 14 different GPB bacterial species, however Staphylococci was dominant. These findings highlight the need of a prospective genomic epidemiology study to comprehensively assess the true burden of GPB neonatal sepsis focusing specifically on mechanisms of resistance and virulence across species and in relation to neonatal outcome.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Sepse Neonatal , Hemocultura , Países em Desenvolvimento , Etiópia , Humanos , Recém-Nascido , Sepse Neonatal/epidemiologia , Estudos Prospectivos , Staphylococcus aureus/genética
10.
Sci Total Environ ; 839: 156074, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35623509

RESUMO

Bacteriophages (phages) are viruses considered to be natural bacterial predators and widely detected in aquatic environments. Sewage samples are an important source of phage isolation since high density and diversity of bacterial cells are present, due to human, animal and household fluids. This study aims to investigate and characterise phages against an extremely drug-resistant (XDR) lineage, Klebsiella pneumoniae ST16, using sewage samples from different parts of the World. Sewage samples from Brazil, Bangladesh, Saudi Arabia, Thailand and the United Kingdom were collected and used to investigate phages against ten K. pneumoniae ST16 (hosts) recovered from infection sites. The phages were microbiological and genetically characterised by double-agar overlay (DLA), transmission electron microscopy and Illumina WGS. The host range against K. pneumoniae belonging to different sequence types was evaluated at different temperatures by spot test. Further phage characterisation, such as efficiency of plating, optimal phage temperature, and pH/temperature susceptibility, were conducted. Fourteen lytic phages were isolated, belonging to Autographiviridae, Ackermannviridae, Demerecviridae, Drexlerviridae, and Myoviridae families, from Brazil, Bangladesh, Saudi Arabia and Thailand and demonstrated a great genetic diversity. The viruses had good activity against our collection of clinical K. pneumoniae ST16 at room temperature and 37 °C, but also against other important Klebsiella clones such as ST11, ST15, and ST258. Temperature assays showed lytic activity in different temperatures, except for PWKp18 which only had activity at room temperature. Phages were stable between pH 5 and 10 with minor changes in phage activity, and 70 °C was the temperature able to kill all phages in this study. Using sewage from different parts of the World allowed us to have a set of highly efficient phages against an K. pneumoniae ST16 that can be used in the future to develop new tools to combat infections in humans or animals caused by this pathogen.


Assuntos
Bacteriófagos , Klebsiella pneumoniae , Animais , Bacteriófagos/genética , Especificidade de Hospedeiro , Klebsiella , Esgotos
11.
Lancet Glob Health ; 10(5): e661-e672, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35427523

RESUMO

BACKGROUND: Neonatal sepsis is a primary cause of neonatal mortality and is an urgent global health concern, especially within low-income and middle-income countries (LMICs), where 99% of global neonatal mortality occurs. The aims of this study were to determine the incidence and associations with neonatal sepsis and all-cause mortality in facility-born neonates in LMICs. METHODS: The Burden of Antibiotic Resistance in Neonates from Developing Societies (BARNARDS) study recruited mothers and their neonates into a prospective observational cohort study across 12 clinical sites from Bangladesh, Ethiopia, India, Pakistan, Nigeria, Rwanda, and South Africa. Data for sepsis-associated factors in the four domains of health care, maternal, birth and neonatal, and living environment were collected for all mothers and neonates enrolled. Primary outcomes were clinically suspected sepsis, laboratory-confirmed sepsis, and all-cause mortality in neonates during the first 60 days of life. Incidence proportion of livebirths for clinically suspected sepsis and laboratory-confirmed sepsis and incidence rate per 1000 neonate-days for all-cause mortality were calculated. Modified Poisson regression was used to investigate factors associated with neonatal sepsis and parametric survival models for factors associated with all-cause mortality. FINDINGS: Between Nov 12, 2015 and Feb 1, 2018, 29 483 mothers and 30 557 neonates were enrolled. The incidence of clinically suspected sepsis was 166·0 (95% CI 97·69-234·24) per 1000 livebirths, laboratory-confirmed sepsis was 46·9 (19·04-74·79) per 1000 livebirths, and all-cause mortality was 0·83 (0·37-2·00) per 1000 neonate-days. Maternal hypertension, previous maternal hospitalisation within 12 months, average or higher monthly household income, ward size (>11 beds), ward type (neonatal), living in a rural environment, preterm birth, perinatal asphyxia, and multiple births were associated with an increased risk of clinically suspected sepsis, laboratory-confirmed sepsis, and all-cause mortality. The majority (881 [72·5%] of 1215) of laboratory-confirmed sepsis cases occurred within the first 3 days of life. INTERPRETATION: Findings from this study highlight the substantial proportion of neonates who develop neonatal sepsis, and the high mortality rates among neonates with sepsis in LMICs. More efficient and effective identification of neonatal sepsis is needed to target interventions to reduce its incidence and subsequent mortality in LMICs. FUNDING: Bill & Melinda Gates Foundation.


Assuntos
Sepse Neonatal , Nascimento Prematuro , Sepse , Países em Desenvolvimento , Feminino , Humanos , Mortalidade Infantil , Recém-Nascido , Sepse Neonatal/epidemiologia , Gravidez , Estudos Prospectivos , Sepse/epidemiologia
12.
Front Microbiol ; 13: 796465, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35308384

RESUMO

Long-read sequencing (LRS) can resolve repetitive regions, a limitation of short read (SR) data. Reduced cost and instrument size has led to a steady increase in LRS across diagnostics and research. Here, we re-basecalled FAST5 data sequenced between 2018 and 2021 and analyzed the data in relation to gDNA across a large dataset (n = 200) spanning a wide GC content (25-67%). We examined whether re-basecalled data would improve the hybrid assembly, and, for a smaller cohort, compared long read (LR) assemblies in the context of antimicrobial resistance (AMR) genes and mobile genetic elements. We included a cost analysis when comparing SR and LR instruments. We compared the R9 and R10 chemistries and reported not only a larger yield but increased read quality with R9 flow cells. There were often discrepancies with ARG presence/absence and/or variant detection in LR assemblies. Flye-based assemblies were generally efficient at detecting the presence of ARG on both the chromosome and plasmids. Raven performed more quickly but inconsistently recovered small plasmids, notably a ∼15-kb Col-like plasmid harboring bla KPC . Canu assemblies were the most fragmented, with genome sizes larger than expected. LR assemblies failed to consistently determine multiple copies of the same ARG as identified by the Unicycler reference. Even with improvements to ONT chemistry and basecalling, long-read assemblies can lead to misinterpretation of data. If LR data are currently being relied upon, it is necessary to perform multiple assemblies, although this is resource (computing) intensive and not yet readily available/useable.

13.
Int J Antimicrob Agents ; 59(5): 106568, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35288258

RESUMO

OBJECTIVE: To describe the undetected circulation of an epidemic BKC-1-producing Klebsiella pneumoniae ST442 clone, occasioning the first reported outbreak of the infrequent carbapenemase BKC-1. METHODS: Six hundred and forty-seven K. pneumoniae isolates (2008-2017) with reduced susceptibility to carbapenems were screened for blaBKC-1. BKC-1-positive isolates were typed using pulsed-field gel electrophoresis and multi-locus sequence typing. Susceptibility profiles were determined by broth microdilution, and additional antimicrobial resistance genes (ARGs) were investigated by polymerase chain reaction. Some isolates were submitted to full genomic characterization by whole-genome sequencing (Illumina MiSeq and MinIon), and in-vivo virulence studies using the Galleria mellonella model. RESULTS: Sixteen (2.5%) K. pneumoniae, from 15 patients, carrying blaBKC-1 were found between 2010 and 2012. Among these patients, the all-cause mortality rate was 54.5%. A major clone - A1-ST442 (13/16) - was isolated during the study period. The BKC-1-producing isolates had a multi-drug-resistant phenotype, remaining susceptible to gentamicin (87.5%) and ceftazidime-avibactam (100%) alone. The presence of two carbapenemases - blaBKC-1 and blaKPC-2 - was detected in six isolates, increasing the ß-lactam minimum inhibitory concentration significantly. Additionally, other ARGs were identified on A1-ST442 and B1-ST11 clones. The B1-ST11 clone was more virulent than the A1-ST442 clone. CONCLUSION: An undetected outbreak caused predominantly by a BKC-1-positive A1-ST442 clone between 2010 and 2012 was identified 10 years later in a Brazilian hospital. The misidentification of BKC-1 may have worsened the spread of resistant clones; this reinforces the need for correct and rapid identification of antimicrobial resistance mechanisms in hospitals.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Proteínas de Bactérias/genética , Carbapenêmicos/farmacologia , Surtos de Doenças , Humanos , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/epidemiologia , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , beta-Lactamases/genética
14.
J Antimicrob Chemother ; 77(6): 1586-1591, 2022 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-35323923

RESUMO

BACKGROUND: Increased use of colistin in healthcare necessitates studies on the trend of colistin resistance and the underlying mechanisms. OBJECTIVES: To understand the susceptibility trend and molecular mechanisms of colistin resistance in neonatal isolates over a 12 year period. METHODS: Colistin susceptibility, mRNA expression, whole genome sequence and mutational analysis was performed. Phylogenomic comparison with a global collection of colistin-resistant Klebsiella pneumoniae strains (n = 70) was done. RESULTS: Of 319 Enterobacterales (K. pneumoniae and Escherichia coli) studied, colistin resistance was found in 9 K. pneumoniae (2.8%). The transmissible colistin resistance gene, mcr, was absent. Colistin-resistant K. pneumoniae belonged to diverse sequence types (ST14/37/101/147/716) and exhibited multiple mechanisms of colistin resistance including overexpression of the two-component systems (TCS) (phoP/Q, pmrA/B), and AcrAB-TolC pump and its regulators. Mutations in TCS, mgrB, pumps, repressors, and lipopolysaccharide-modifying genes were detected. Phylogenomic comparison revealed that this global collection of colistin-resistant K. pneumoniae was diverse, with the presence of epidemic and international clones. Mutations in mgrB and TCS noted in global strains were comparable to the study strains. Co-occurrence of carbapenem resistance (n = 61, 87%) was observed in global strains. Co-existence of dual carbapenemases (blaNDM-5 with blaOXA-48/181) in multiple lineages within different replicons was found in neonatal colistin-resistant study isolates only. CONCLUSIONS: Colistin resistance both in study and global strains is multifaceted and attributed to mutations in chromosomal genes leading to lipopolysaccharide modification or efflux of colistin through pumps. With no transmissible mcr, prevalence of colistin-resistant strains was low in this unit. Colistin-resistant strains with dual carbapenemases causing sepsis are alarming as they are practically untreatable.


Assuntos
Infecções por Klebsiella , Sepse Neonatal , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Colistina/farmacologia , Farmacorresistência Bacteriana/genética , Escherichia coli/genética , Humanos , Recém-Nascido , Infecções por Klebsiella/epidemiologia , Klebsiella pneumoniae , Lipopolissacarídeos , Testes de Sensibilidade Microbiana , Filogenia , beta-Lactamases/genética
15.
Antimicrob Resist Infect Control ; 11(1): 49, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35296353

RESUMO

BACKGROUND: The burden of antibiotic resistant infection is mainly felt in low-to-middle income countries, where the rate of antimicrobial resistance is largely under-surveyed and under huge pressure from unregulated, disparate and often self-guided access to antimicrobials. Nosocomial infections from hospital environments have been shown to be a particularly prevalent source of multi-drug resistant strains, yet surveillance of hospital environmental contamination is often not investigated. METHODS: The study was prospective, observational and cross-sectional, sampling 231 high and low touch surfaces from 15th March to 13th April 2021, from five wards in the Cape Coast Teaching Hospital, Ghana. Microbial growth in the presence of vancomycin and either meropenem or cefotaxime was examined and bacterial species were identified by MALDI-TOF. The presence of common extended-spectrum ß-lactamases (ESBL) and carbapenemase antimicrobial resistance genes (ARG) were identified through PCR screening, which were confirmed by phenotypic antimicrobial susceptibility determination. Isolates positive for carbapenem resistance genes were sequenced using a multi-platform approach. RESULTS: We recovered microbial growth from 99% of swabs (n = 229/231) plated on agar in the absence of antimicrobials. Multiple sites were found to be colonised with resistant bacteria throughout the hospital setting. Bacteria with multi-drug resistance and ARG of concern were isolated from high and low touch points with evidence of strain dissemination throughout the environment. A total of 21 differing species of bacteria carrying ARG were isolated. The high prevalence of Acinetobacter baumannii carrying blaNDM-1 observed was further characterised by whole genome sequencing and phylogenetic analysis to determine the relationship between resistant strains found in different wards. CONCLUSION: Evidence of multiple clonal incursions of MDR bacteria of high sepsis risk were found in two separate wards for a regional hospital in Ghana. The prevalence of multiple blaNDM carrying species in combination with combinations of ESBLs was particularly concerning and unexpected in Africa. We also identify strains carrying tet(X3), blaVIM-5 or blaDIM-1 showing a high diversity of carbapenamases present as a reservoir in a hospital setting. Findings of multi-drug resistant bacteria from multiple environmental sites throughout the hospital will inform future IPC practices and aid research prioritisation for AMR in Ghana.


Assuntos
Antibacterianos , Bactérias Gram-Negativas , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Proteínas de Bactérias , Estudos Transversais , Monitoramento Ambiental , Gana/epidemiologia , Bactérias Gram-Negativas/genética , Humanos , Testes de Sensibilidade Microbiana , Filogenia , Estudos Prospectivos , Centros de Atenção Terciária , beta-Lactamases
16.
Infect Drug Resist ; 15: 933-946, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35299860

RESUMO

Neonatal sepsis is defined as a systemic infection within the first 28 days of life, with early-onset sepsis (EOS) occurring within the first 72h, although the definition of EOS varies in literature. Whilst the global incidence has dramatically reduced over the last decade, neonatal sepsis remains an important cause of neonatal mortality, highest in low- and middle-income countries (LMICs). Symptoms at the onset of neonatal sepsis can be subtle, and therefore EOS is often difficult to diagnose from clinical presentation and laboratory testing and blood cultures are not always conclusive or accessible, especially in resource limited countries. Although the World Health Organisation (WHO) currently advocates a ß-lactam, and gentamicin for first line treatment, availability and cost influence the empirical antibiotic therapy administered. Antibiotic treatment of neonatal sepsis in LMICs is highly variable, partially caused by factors such as cost of antibiotics (and who pays for them) and access to certain antibiotics. Antimicrobial resistance (AMR) has increased considerably over the past decade and this review discusses current microbiology data available in the context of the diagnosis, and treatment for EOS. Importantly, this review highlights a large variability in data availability, methodology, availability of diagnostics, and aetiology of sepsis pathogens.

17.
Emerg Microbes Infect ; 11(1): 1015-1023, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35259067

RESUMO

Bacteriophages are the most abundant organisms on Earth. As there are few effective treatment options against some pathogens, the interest in the bacteriophage control of multi-drug-resistant bacterial pathogens is escalating, especially for Klebsiella pneumoniae. This study aimed to develop a phage-based solution to the rising incidence of extensively drug-resistant clinical Klebsiella pneumoniae sequence type (ST16) infections starting from a set of phages recently characterized against this lineage. A phage-cocktail (Katrice-16) composed of eight lytic phages was characterized for potential use in humans. In vitro and in vivo broth inhibition and Galleria mellonella rescue assays were used to demonstrate the efficacy of this approach using a collection of 56 strains of K. pneumoniae ST16, with distinct genetic backgrounds that were collected from clinical infections from four disparate nations. Additionally, Katrice-16 anti-biofilm activity, synergism with meropenem, and activity in human body fluids were also assessed. Katrice-16 was highly active in vitro against our K. pneumoniae ST16 collection (AUC% median = 86.48%; Q1 = 83.8%; Q2 = 96.85%; Q3 = 98.85%). It additionally demonstrated excellent in vivo activity in G. mellonella rescue assays, even with larvae infected by isolates that exhibited moderate in vitro inhibition. We measured significant anti-biofilm activity over 12 h (p = .0113) and synergic activity with meropenem. In addition, we also demonstrate that Katrice-16 maintained high activity in human body fluids. Our results indicate that our cocktail will likely be an effective solution for human infections with this increasingly prevalent and often highly resistant bacterial clone.


Assuntos
Bacteriófagos , Klebsiella pneumoniae , Antibacterianos/farmacologia , Bacteriófagos/genética , Humanos , Incidência , Klebsiella pneumoniae/genética , Meropeném/farmacologia , Testes de Sensibilidade Microbiana
18.
Antibiotics (Basel) ; 10(11)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34827308

RESUMO

Lefamulin is the first of the pleuromutilin class of antimicrobials to be available for therapeutic use in humans. Minimum inhibitory concentrations of lefamulin were determined by microbroth dilution for 90 characterised clinical isolates (25 Ureaplasma parvum, 25 Ureaplasma urealyticum, and 40 Mycoplasma hominis). All Mycoplasma hominis isolates possessed lefamulin MICs of ≤0.25 mg/L after 48 h (MIC50/90 of 0.06/0.12 mg/L), despite an inherent resistance to macrolides; while Ureaplasma isolates had MICs of ≤2 mg/L after 24 h (MIC50/90 of 0.25/1 mg/L), despite inherent resistance to clindamycin. Two U. urealyticum isolates with additional A2058G mutations of 23S rRNA, and one U. parvum isolate with a R66Q67 deletion (all of which had a combined resistance to macrolides and clindamycin) only showed a 2-fold increase in lefamulin MIC (1-2 mg/L) relative to macrolide-susceptible strains. Lefamulin could be an effective alternative antimicrobial for treating Ureaplasma spp. and Mycoplasma hominis infections irrespective of intrinsic or acquired resistance to macrolides, lincosamides, and ketolides. Based on this potent in vitro activity and the known good, rapid, and homogenous tissue penetration of female and male urogenital tissues and glands, further exploration of clinical efficacy of lefamulin for the treatment of Mycoplasma and Ureaplasma urogenital infections is warranted.

19.
Antibiotics (Basel) ; 10(11)2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34827317

RESUMO

Often dismissed as a commensal, Mycoplasma hominis is an increasingly prominent target of research due to its role in septic arthritis and organ transplant failure in immunosuppressed patients, particularly lung transplantation. As a mollicute, its highly reductive genome and structure render it refractile to most forms of treatment and growing levels of resistance to the few sources of treatment left, such as fluoroquinolones. We examined antimicrobial susceptibility (AST) to fluoroquinolones on 72 isolates and observed resistance in three (4.1%), with corresponding mutations in the quinolone resistance-determining region (QRDR) of S83L or E87G in gyrA and S81I or E85V in parC. However, there were high levels of polymorphism identified between all isolates outside of the QRDR, indicating caution for a genomics-led approach for resistance screening, particularly as we observed a further two quinolone-susceptible isolates solely containing gyrA mutation S83L. However, both isolates spontaneously developed a second spontaneous E85K parC mutation and resistance following prolonged incubation in 4 mg/L levofloxacin for an extra 24-48 h. Continued AST surveillance and investigation is required to understand how gyrA QRDR mutations predispose M. hominis to rapid spontaneous mutation and fluoroquinolone resistance, absent from other susceptible isolates. The unusually high prevalence of polymorphisms in M. hominis also warrants increased genomics' surveillance.

20.
Nat Microbiol ; 6(10): 1259-1270, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34580444

RESUMO

Understanding how multidrug-resistant Enterobacterales (MDRE) are transmitted in low- and middle-income countries (LMICs) is critical for implementing robust policies to curb the increasing burden of antimicrobial resistance (AMR). Here, we analysed samples from surgical site infections (SSIs), hospital surfaces (HSs) and arthropods (summer and winter 2016) to investigate the incidence and transmission of MDRE in a public hospital in Pakistan. We investigated Enterobacterales containing resistance genes (blaCTX-M-15, blaNDM and blaOXA-48-like) for identification, antimicrobial susceptibility testing and whole-genome sequencing. Genotypes, phylogenetic relationships and transmission events for isolates from different sources were investigated using single-nucleotide polymorphism (SNP) analysis with a cut-off of ≤20 SNPs. Escherichia coli (14.3%), Klebsiella pneumoniae (10.9%) and Enterobacter cloacae (16.3%) were the main MDRE species isolated. The carbapenemase gene blaNDM was most commonly detected, with 15.5%, 15.1% and 13.3% of samples positive in SSIs, HSs and arthropods, respectively. SNP (≤20) and spatiotemporal analysis revealed linkages in bacteria between SSIs, HSs and arthropods supporting the One Health approach to underpin infection control policies across LMICs and control AMR.


Assuntos
Vetores Artrópodes/microbiologia , Farmacorresistência Bacteriana Múltipla , Infecções por Enterobacteriaceae/microbiologia , Enterobacteriaceae/isolamento & purificação , Infecção da Ferida Cirúrgica/microbiologia , Animais , Antibacterianos/farmacologia , Vetores Artrópodes/classificação , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/genética , Enterobacteriaceae/classificação , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/genética , Infecções por Enterobacteriaceae/epidemiologia , Infecções por Enterobacteriaceae/transmissão , Microbiologia Ambiental , Variação Genética , Hospitais , Humanos , Testes de Sensibilidade Microbiana , Paquistão/epidemiologia , Filogenia , Plasmídeos/genética , Prevalência , Estações do Ano , Infecção da Ferida Cirúrgica/epidemiologia , Infecção da Ferida Cirúrgica/transmissão , beta-Lactamases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA