Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Gastroenterology ; 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467384

RESUMO

BACKGROUND & AIMS: Histologic evaluation of gut biopsy specimens is a cornerstone for diagnosis and management of celiac disease (CeD). Despite its wide use, the method depends on proper biopsy orientation, and it suffers from interobserver variability. Biopsy proteome measurement reporting on the tissue state can be obtained by mass spectrometry analysis of formalin-fixed paraffin-embedded tissue. Here we aimed to transform biopsy proteome data into numerical scores that give observer-independent measures of mucosal remodeling in CeD. METHODS: A pipeline using glass-mounted formalin-fixed paraffin-embedded sections for mass spectrometry-based proteome analysis was established. Proteome data were converted to numerical scores using 2 complementary approaches: a rank-based enrichment score and a score based on machine-learning using logistic regression. The 2 scoring approaches were compared with each other and with histology analyzing 18 patients with CeD with biopsy specimens collected before and after treatment with a gluten-free diet as well as biopsy specimens from patients with CeD with varying degree of remission (n = 22). Biopsy specimens from individuals without CeD (n = 32) were also analyzed. RESULTS: The method yielded reliable proteome scoring of both unstained and H&E-stained glass-mounted sections. The scores of the 2 approaches were highly correlated, reflecting that both approaches pick up proteome changes in the same biological pathways. The proteome scores correlated with villus height-to-crypt depth ratio. Thus, the method is able to score biopsy specimens with poor orientation. CONCLUSIONS: Biopsy proteome scores give reliable observer and orientation-independent measures of mucosal remodeling in CeD. The proteomic method can readily be implemented by nonexpert laboratories in parallel to histology assessment and easily scaled for clinical trial settings.

2.
Front Public Health ; 11: 1258840, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38146473

RESUMO

Aims: To develop a disease risk score for COVID-19-related hospitalization and mortality in Sweden and externally validate it in Norway. Method: We employed linked data from the national health registries of Sweden and Norway to conduct our study. We focused on individuals in Sweden with confirmed SARS-CoV-2 infection through RT-PCR testing up to August 2022 as our study cohort. Within this group, we identified hospitalized cases as those who were admitted to the hospital within 14 days of testing positive for SARS-CoV-2 and matched them with five controls from the same cohort who were not hospitalized due to SARS-CoV-2. Additionally, we identified individuals who died within 30 days after being hospitalized for COVID-19. To develop our disease risk scores, we considered various factors, including demographics, infectious, somatic, and mental health conditions, recorded diagnoses, and pharmacological treatments. We also conducted age-specific analyses and assessed model performance through 5-fold cross-validation. Finally, we performed external validation using data from the Norwegian population with COVID-19 up to December 2021. Results: During the study period, a total of 124,560 individuals in Sweden were hospitalized, and 15,877 individuals died within 30 days following COVID-19 hospitalization. Disease risk scores for both hospitalization and mortality demonstrated predictive capabilities with ROC-AUC values of 0.70 and 0.72, respectively, across the entire study period. Notably, these scores exhibited a positive correlation with the likelihood of hospitalization or death. In the external validation using data from the Norwegian COVID-19 population (consisting of 53,744 individuals), the disease risk score predicted hospitalization with an AUC of 0.47 and death with an AUC of 0.74. Conclusion: The disease risk score showed moderately good performance to predict COVID-19-related mortality but performed poorly in predicting hospitalization when externally validated.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , SARS-CoV-2 , Suécia/epidemiologia , Fatores de Risco , Hospitalização , Aprendizado de Máquina
3.
BMC Neurosci ; 24(1): 56, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37875799

RESUMO

BACKGROUND: Imaging of in vitro neuronal differentiation and measurements of cell morphologies have led to novel insights into neuronal development. Live-cell imaging techniques and large datasets of images have increased the demand for automated pipelines for quantitative analysis of neuronal morphological metrics. RESULTS: ANDA is an analysis workflow that quantifies various aspects of neuronal morphology from high-throughput live-cell imaging screens of in vitro neuronal cell types. This tool automates the analysis of neuronal cell numbers, neurite lengths and neurite attachment points. We used chicken, rat, mouse, and human in vitro models for neuronal differentiation and have demonstrated the accuracy, versatility, and efficiency of the tool. CONCLUSIONS: ANDA is an open-source tool that is easy to use and capable of automated processing from time-course measurements of neuronal cells. The strength of this pipeline is the capability to analyse high-throughput imaging screens.


Assuntos
Neuritos , Neurônios , Camundongos , Ratos , Animais , Humanos , Neuritos/fisiologia , Neurogênese/fisiologia , Processamento de Imagem Assistida por Computador/métodos , Contagem de Células
4.
Bioinformatics ; 39(10)2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37802917

RESUMO

MOTIVATION: Gene co-expression measurements are widely used in computational biology to identify coordinated expression patterns across a group of samples. Coordinated expression of genes may indicate that they are controlled by the same transcriptional regulatory program, or involved in common biological processes. Gene co-expression is generally estimated from RNA-Sequencing data, which are commonly normalized to remove technical variability. Here, we demonstrate that certain normalization methods, in particular quantile-based methods, can introduce false-positive associations between genes. These false-positive associations can consequently hamper downstream co-expression network analysis. Quantile-based normalization can, however, be extremely powerful. In particular, when preprocessing large-scale heterogeneous data, quantile-based normalization methods such as smooth quantile normalization can be applied to remove technical variability while maintaining global differences in expression for samples with different biological attributes. RESULTS: We developed SNAIL (Smooth-quantile Normalization Adaptation for the Inference of co-expression Links), a normalization method based on smooth quantile normalization specifically designed for modeling of co-expression measurements. We show that SNAIL avoids formation of false-positive associations in co-expression as well as in downstream network analyses. Using SNAIL, one can avoid arbitrary gene filtering and retain associations to genes that only express in small subgroups of samples. This highlights the method's potential future impact on network modeling and other association-based approaches in large-scale heterogeneous data. AVAILABILITY AND IMPLEMENTATION: The implementation of the SNAIL algorithm and code to reproduce the analyses described in this work can be found in the GitHub repository https://github.com/kuijjerlab/PySNAIL.


Assuntos
Perfilação da Expressão Gênica , RNA , Perfilação da Expressão Gênica/métodos , Análise de Sequência de RNA/métodos , Algoritmos , Biologia Computacional
5.
PLoS One ; 18(7): e0286330, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37467208

RESUMO

Many high-throughput sequencing datasets can be represented as objects with coordinates along a reference genome. Currently, biological investigations often involve a large number of such datasets, for example representing different cell types or epigenetic factors. Drawing overall conclusions from a large collection of results for individual datasets may be challenging and time-consuming. Meaningful interpretation often requires the results to be aggregated according to metadata that represents biological characteristics of interest. In this light, we here propose the hierarchical Genomic Suite HyperBrowser (hGSuite), an open-source extension to the GSuite HyperBrowser platform, which aims to provide a means for extracting key results from an aggregated collection of high-throughput DNA sequencing data. The hGSuite utilizes a metadata-informed data cube to calculate various statistics across the multiple dimensions of the datasets. With this work, we show that the hGSuite and its associated data cube methodology offers a quick and accessible way for exploratory analysis of large genomic datasets. The web-based toolkit named hGsuite Hyperbrowser is available at https://hyperbrowser.uio.no/hgsuite under a GPLv3 license.


Assuntos
Metadados , Software , Genômica/métodos , Genoma , Internet
6.
Front Public Health ; 11: 1183725, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37408750

RESUMO

Aim: To perform a systematic review on the use of Artificial Intelligence (AI) techniques for predicting COVID-19 hospitalization and mortality using primary and secondary data sources. Study eligibility criteria: Cohort, clinical trials, meta-analyses, and observational studies investigating COVID-19 hospitalization or mortality using artificial intelligence techniques were eligible. Articles without a full text available in the English language were excluded. Data sources: Articles recorded in Ovid MEDLINE from 01/01/2019 to 22/08/2022 were screened. Data extraction: We extracted information on data sources, AI models, and epidemiological aspects of retrieved studies. Bias assessment: A bias assessment of AI models was done using PROBAST. Participants: Patients tested positive for COVID-19. Results: We included 39 studies related to AI-based prediction of hospitalization and death related to COVID-19. The articles were published in the period 2019-2022, and mostly used Random Forest as the model with the best performance. AI models were trained using cohorts of individuals sampled from populations of European and non-European countries, mostly with cohort sample size <5,000. Data collection generally included information on demographics, clinical records, laboratory results, and pharmacological treatments (i.e., high-dimensional datasets). In most studies, the models were internally validated with cross-validation, but the majority of studies lacked external validation and calibration. Covariates were not prioritized using ensemble approaches in most of the studies, however, models still showed moderately good performances with Area under the Receiver operating characteristic Curve (AUC) values >0.7. According to the assessment with PROBAST, all models had a high risk of bias and/or concern regarding applicability. Conclusions: A broad range of AI techniques have been used to predict COVID-19 hospitalization and mortality. The studies reported good prediction performance of AI models, however, high risk of bias and/or concern regarding applicability were detected.


Assuntos
Inteligência Artificial , COVID-19 , Humanos , COVID-19/epidemiologia , Hospitalização , Idioma , Curva ROC
7.
bioRxiv ; 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37162841

RESUMO

Background: Imaging of in vitro neuronal differentiation and measurements of cell morphologies has led to novel insights into neuronal development. Live-cell imaging techniques and large datasets of images has increased the demand for automated pipelines for quantitative analysis of neuronal morphological metrics. Results: We present ANDA, an analysis workflow for quantification of various aspects of neuronal morphology from high-throughput live-cell imaging screens. This tool automates the analysis of neuronal cell numbers, neurite lengths and neurite attachment points. We used rat, chicken and human in vitro models for neuronal differentiation and have demonstrated the accuracy, versatility, and efficiency of the tool. Conclusions: ANDA is an open-source tool that is easy to use and capable of automated processing from time-course measurements of neuronal cells. The strength of this pipeline is the capability to analyse high-throughput imaging screens.

8.
Transl Psychiatry ; 13(1): 149, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37147306

RESUMO

Studies assessing associations between prenatal exposure to antidepressants, maternal depression, and offspring DNA methylation (DNAm) have been inconsistent. Here, we investigated whether prenatal exposure to citalopram or escitalopram ((es)citalopram) and maternal depression is associated with differences in DNAm. Then, we examined if there is an interaction effect of (es)citalopram exposure and DNAm on offspring neurodevelopmental outcomes. Finally, we investigated whether DNAm at birth correlates with neurodevelopmental trajectories in childhood. We analyzed DNAm in cord blood from the Norwegian Mother, Father and Child Cohort Study (MoBa) biobank. MoBa contains questionnaire data on maternal (es)citalopram use and depression during pregnancy and information about child neurodevelopmental outcomes assessed by internationally recognized psychometric tests. In addition, we retrieved ADHD diagnoses from the Norwegian Patient Registry and information on pregnancies from the Medical Birth Registry of Norway. In total, 958 newborn cord blood samples were divided into three groups: (1) prenatal (es)citalopram exposed (n = 306), (2) prenatal maternal depression exposed (n = 308), and (3) propensity score-selected controls (n = 344). Among children exposed to (es)citalopram, there were more ADHD diagnoses and symptoms and delayed communication and psychomotor development. We did not identify differential DNAm associated with (es)citalopram or depression, nor any interaction effects on neurodevelopmental outcomes throughout childhood. Trajectory modeling identified subgroups of children following similar developmental patterns. Some of these subgroups were enriched for children exposed to maternal depression, and some subgroups were associated with differences in DNAm at birth. Interestingly, several of the differentially methylated genes are involved in neuronal processes and development. These results suggest DNAm as a potential predictive molecular marker of later abnormal neurodevelopmental outcomes, but we cannot conclude whether DNAm links prenatal (es)citalopram exposure or maternal depression with child neurodevelopmental outcomes.


Assuntos
Metilação de DNA , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Recém-Nascido , Feminino , Humanos , Criança , Citalopram/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal/genética , Estudos de Coortes , Depressão
9.
Sci Adv ; 9(4): eade5800, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36696493

RESUMO

CD4+ T cells specific for cereal gluten proteins are key players in celiac disease (CeD) pathogenesis. While several CeD-relevant gluten T cell epitopes have been identified, epitopes recognized by a substantial proportion of gluten-reactive T cells remain unknown. The identification of such CeD-driving gluten epitopes is important for the food industry and in clinical settings. Here, we have combined the knowledge of a distinct phenotype of gluten-reactive T cells and key features of known gluten epitopes for the discovery of unknown epitopes. We tested 42 wheat gluten-reactive T cell clones, isolated on the basis of their distinct phenotype and with no reactivity to known epitopes, against a panel of synthetic peptides bioinformatically identified from a wheat gluten protein database. We were able to assign reactivity to 10 T cell clones and identified a 9-nucleotide oligomer core region of five previously uncharacterized gliadin/glutenin epitopes. This work represents an advance in the effort to identify CeD-driving gluten epitopes.


Assuntos
Doença Celíaca , Humanos , Doença Celíaca/metabolismo , Epitopos de Linfócito T , Glutens , Gliadina/genética , Gliadina/metabolismo , Peptídeos/metabolismo
10.
Genome Biol ; 23(1): 209, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36195962

RESUMO

Genotyping is a core application of high-throughput sequencing. We present KAGE, a genotyper for SNPs and short indels that is inspired by recent developments within graph-based genome representations and alignment-free methods. KAGE uses a pan-genome representation of the population to efficiently and accurately predict genotypes. Two novel ideas improve both the speed and accuracy: a Bayesian model incorporates genotypes from thousands of individuals to improve prediction accuracy, and a computationally efficient method leverages correlation between variants. We show that the accuracy of KAGE is at par with the best existing alignment-free genotypers, while being an order of magnitude faster.


Assuntos
Mutação INDEL , Polimorfismo de Nucleotídeo Único , Algoritmos , Teorema de Bayes , Genoma Humano , Genótipo , Técnicas de Genotipagem , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Análise de Sequência de DNA
12.
Bioinformatics ; 38(17): 4230-4232, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-35852318

RESUMO

MOTIVATION: Adaptive immune receptor (AIR) repertoires (AIRRs) record past immune encounters with exquisite specificity. Therefore, identifying identical or similar AIR sequences across individuals is a key step in AIRR analysis for revealing convergent immune response patterns that may be exploited for diagnostics and therapy. Existing methods for quantifying AIRR overlap scale poorly with increasing dataset numbers and sizes. To address this limitation, we developed CompAIRR, which enables ultra-fast computation of AIRR overlap, based on either exact or approximate sequence matching. RESULTS: CompAIRR improves computational speed 1000-fold relative to the state of the art and uses only one-third of the memory: on the same machine, the exact pairwise AIRR overlap of 104 AIRRs with 105 sequences is found in ∼17 min, while the fastest alternative tool requires 10 days. CompAIRR has been integrated with the machine learning ecosystem immuneML to speed up commonly used AIRR-based machine learning applications. AVAILABILITY AND IMPLEMENTATION: CompAIRR code and documentation are available at https://github.com/uio-bmi/compairr. Docker images are available at https://hub.docker.com/r/torognes/compairr. The code to replicate the synthetic datasets, scripts for benchmarking and creating figures, and all raw data underlying the figures are available at https://github.com/uio-bmi/compairr-benchmarking. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Ecossistema , Software , Humanos , Aprendizado de Máquina , Benchmarking
13.
Clin Epigenetics ; 14(1): 80, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35765087

RESUMO

BACKGROUND: There is an increasing interest in the role of epigenetics in epidemiology, but the emerging research field faces several critical biological and technical challenges. In particular, recent studies have shown poor correlation of measured DNA methylation (DNAm) levels within and across Illumina Infinium platforms in various tissues. In this study, we have investigated concordance between 450 k and EPIC Infinium platforms in cord blood. We could not replicate our previous findings on the association of prenatal paracetamol exposure with cord blood DNAm, which prompted an investigation of cross-platform DNAm differences. RESULTS: This study is based on two DNAm data sets from cord blood samples selected from the Norwegian Mother, Father and Child Cohort Study (MoBa). DNAm of one data set was measured using the 450 k platform and the other data set was measured using the EPIC platform. Initial analyses of the EPIC data could not replicate any of our previous significant findings in the 450 k data on associations between prenatal paracetamol exposure and cord blood DNAm. A subset of the samples (n = 17) was included in both data sets, which enabled analyses of technical sources potentially contributing to the negative replication. Analyses of these 17 samples with repeated measurements revealed high per-sample correlations ([Formula: see text] 0.99), but low per-CpG correlations ([Formula: see text] ≈ 0.24) between the platforms. 1.7% of the CpGs exhibited a mean DNAm difference across platforms > 0.1. Furthermore, only 26.7% of the CpGs exhibited a moderate or better cross-platform reliability (intra-class correlation coefficient ≥ 0.5). CONCLUSION: The observations of low cross-platform probe correlation and reliability corroborate previous reports in other tissues. Our study cannot determine the origin of the differences between platforms. Nevertheless, it emulates the setting in studies using data from multiple Infinium platforms, often analysed several years apart. Therefore, the findings may have important implications for future epigenome-wide association studies (EWASs), in replication, meta-analyses and longitudinal studies. Cognisance and transparency of the challenges related to cross-platform studies may enhance the interpretation, replicability and validity of EWAS results both in cord blood and other tissues, ultimately improving the clinical relevance of epigenetic epidemiology.


Assuntos
Metilação de DNA , Efeitos Tardios da Exposição Pré-Natal , Acetaminofen/efeitos adversos , Estudos de Coortes , Feminino , Sangue Fetal , Humanos , Noruega , Gravidez , Efeitos Tardios da Exposição Pré-Natal/genética , Reprodutibilidade dos Testes
14.
MAbs ; 14(1): 2031482, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35377271

RESUMO

Generative machine learning (ML) has been postulated to become a major driver in the computational design of antigen-specific monoclonal antibodies (mAb). However, efforts to confirm this hypothesis have been hindered by the infeasibility of testing arbitrarily large numbers of antibody sequences for their most critical design parameters: paratope, epitope, affinity, and developability. To address this challenge, we leveraged a lattice-based antibody-antigen binding simulation framework, which incorporates a wide range of physiological antibody-binding parameters. The simulation framework enables the computation of synthetic antibody-antigen 3D-structures, and it functions as an oracle for unrestricted prospective evaluation and benchmarking of antibody design parameters of ML-generated antibody sequences. We found that a deep generative model, trained exclusively on antibody sequence (one dimensional: 1D) data can be used to design conformational (three dimensional: 3D) epitope-specific antibodies, matching, or exceeding the training dataset in affinity and developability parameter value variety. Furthermore, we established a lower threshold of sequence diversity necessary for high-accuracy generative antibody ML and demonstrated that this lower threshold also holds on experimental real-world data. Finally, we show that transfer learning enables the generation of high-affinity antibody sequences from low-N training data. Our work establishes a priori feasibility and the theoretical foundation of high-throughput ML-based mAb design.


Assuntos
Reações Antígeno-Anticorpo , Aprendizado de Máquina , Anticorpos Monoclonais/química , Sítios de Ligação de Anticorpos , Epitopos
15.
Brief Bioinform ; 23(2)2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35062022

RESUMO

T-cell receptor (TCR) sequencing has enabled the development of innovative diagnostic tests for cancers, autoimmune diseases and other applications. However, the rarity of many T-cell clonotypes presents a detection challenge, which may lead to misdiagnosis if diagnostically relevant TCRs remain undetected. To address this issue, we developed TCRpower, a novel computational pipeline for quantifying the statistical detection power of TCR sequencing methods. TCRpower calculates the probability of detecting a TCR sequence as a function of several key parameters: in-vivo TCR frequency, T-cell sample count, read sequencing depth and read cutoff. To calibrate TCRpower, we selected unique TCRs of 45 T-cell clones (TCCs) as spike-in TCRs. We sequenced the spike-in TCRs from TCCs, together with TCRs from peripheral blood, using a 5' RACE protocol. The 45 spike-in TCRs covered a wide range of sample frequencies, ranging from 5 per 100 to 1 per 1 million. The resulting spike-in TCR read counts and ground truth frequencies allowed us to calibrate TCRpower. In our TCR sequencing data, we observed a consistent linear relationship between sample and sequencing read frequencies. We were also able to reliably detect spike-in TCRs with frequencies as low as one per million. By implementing an optimized read cutoff, we eliminated most of the falsely detected sequences in our data (TCR α-chain 99.0% and TCR ß-chain 92.4%), thereby improving diagnostic specificity. TCRpower is publicly available and can be used to optimize future TCR sequencing experiments, and thereby enable reliable detection of disease-relevant TCRs for diagnostic applications.


Assuntos
Receptores de Antígenos de Linfócitos T , Humanos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Linfócitos T
16.
Nat Comput Sci ; 2(12): 845-865, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38177393

RESUMO

Machine learning (ML) is a key technology for accurate prediction of antibody-antigen binding. Two orthogonal problems hinder the application of ML to antibody-specificity prediction and the benchmarking thereof: the lack of a unified ML formalization of immunological antibody-specificity prediction problems and the unavailability of large-scale synthetic datasets to benchmark real-world relevant ML methods and dataset design. Here we developed the Absolut! software suite that enables parameter-based unconstrained generation of synthetic lattice-based three-dimensional antibody-antigen-binding structures with ground-truth access to conformational paratope, epitope and affinity. We formalized common immunological antibody-specificity prediction problems as ML tasks and confirmed that for both sequence- and structure-based tasks, accuracy-based rankings of ML methods trained on experimental data hold for ML methods trained on Absolut!-generated data. The Absolut! framework has the potential to enable real-world relevant development and benchmarking of ML strategies for biotherapeutics design.


Assuntos
Anticorpos , Reações Antígeno-Anticorpo , Especificidade de Anticorpos , Epitopos/química , Aprendizado de Máquina
17.
Genome Res ; 31(12): 2209-2224, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34815307

RESUMO

The process of recombination between variable (V), diversity (D), and joining (J) immunoglobulin (Ig) gene segments determines an individual's naive Ig repertoire and, consequently, (auto)antigen recognition. VDJ recombination follows probabilistic rules that can be modeled statistically. So far, it remains unknown whether VDJ recombination rules differ between individuals. If these rules differed, identical (auto)antigen-specific Ig sequences would be generated with individual-specific probabilities, signifying that the available Ig sequence space is individual specific. We devised a sensitivity-tested distance measure that enables inter-individual comparison of VDJ recombination models. We discovered, accounting for several sources of noise as well as allelic variation in Ig sequencing data, that not only unrelated individuals but also human monozygotic twins and even inbred mice possess statistically distinguishable immunoglobulin recombination models. This suggests that, in addition to genetic, there is also nongenetic modulation of VDJ recombination. We demonstrate that population-wide individualized VDJ recombination can result in orders of magnitude of difference in the probability to generate (auto)antigen-specific Ig sequences. Our findings have implications for immune receptor-based individualized medicine approaches relevant to vaccination, infection, and autoimmunity.

18.
PLoS One ; 16(10): e0258029, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34618841

RESUMO

Gluten-specific CD4+ T cells drive the pathogenesis of celiac disease and circulating gluten-specific T cells can be identified by staining with HLA-DQ:gluten tetramers. In this first single-cell RNA-seq study of tetramer-sorted T cells from untreated celiac disease patients blood, we found that gluten-specific T cells showed distinct transcriptomic profiles consistent with activated effector memory T cells that shared features with Th1 and follicular helper T cells. Compared to non-specific cells, gluten-specific T cells showed differential expression of several genes involved in T-cell receptor signaling, translational processes, apoptosis, fatty acid transport, and redox potentials. Many of the gluten-specific T cells studied shared T-cell receptor with each other, indicating that circulating gluten-specific T cells belong to a limited number of clones. Moreover, the transcriptional profiles of cells that shared the same clonal origin were transcriptionally more similar compared with between clonally unrelated gluten-specific cells.


Assuntos
Doença Celíaca/genética , Linhagem da Célula/genética , Regulação da Expressão Gênica/genética , Glutens/genética , Linfócitos T/metabolismo , Doença Celíaca/patologia , Perfilação da Expressão Gênica , Glutens/biossíntese , Humanos , RNA-Seq , Receptores de Antígenos de Linfócitos T/genética , Análise de Célula Única , Linfócitos T/classificação , Células Th1/metabolismo , Células Th1/patologia
19.
Front Immunol ; 12: 639672, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33927715

RESUMO

Gluten-specific CD4+ T cells are drivers of celiac disease (CeD). Previous studies of gluten-specific T-cell receptor (TCR) repertoires have found public TCRs shared across multiple individuals, biased usage of particular V-genes and conserved CDR3 motifs. The CDR3 motifs within the gluten-specific TCR repertoire, however, have not been systematically investigated. In the current study, we analyzed the largest TCR database of gluten-specific CD4+ T cells studied so far consisting of TCRs of 3122 clonotypes from 63 CeD patients. We established a TCR database from CD4+ T cells isolated with a mix of HLA-DQ2.5:gluten tetramers representing four immunodominant gluten epitopes. In an unbiased fashion we searched by hierarchical clustering for common CDR3 motifs among 2764 clonotypes. We identified multiple CDR3α, CDR3ß, and paired CDR3α:CDR3ß motif candidates. Among these, a previously known conserved CDR3ß R-motif used by TRAV26-1/TRBV7-2 TCRs specific for the DQ2.5-glia-α2 epitope was the most prominent motif. Furthermore, we identified the epitope specificity of altogether 16 new CDR3α:CDR3ß motifs by comparing with TCR sequences of 231 T-cell clones with known specificity and TCR sequences of cells sorted with single HLA-DQ2.5:gluten tetramers. We identified 325 public TCRα and TCRß sequences of which 145, 102 and 78 belonged to TCRα, TCRß and paired TCRαß sequences, respectively. While the number of public sequences was depended on the number of clonotypes in each patient, we found that the proportion of public clonotypes from the gluten-specific TCR repertoire of given CeD patients appeared to be stable (median 37%). Taken together, we here demonstrate that the TCR repertoire of CD4+ T cells specific to immunodominant gluten epitopes in CeD is diverse, yet there is clearly biased V-gene usage, presence of public TCRs and existence of conserved motifs of which R-motif is the most prominent.


Assuntos
Motivos de Aminoácidos/genética , Linfócitos T CD4-Positivos/metabolismo , Glutens/genética , Receptores de Antígenos de Linfócitos T/genética , Doença Celíaca/genética , Regiões Determinantes de Complementaridade/genética , Epitopos de Linfócito T/genética , Genes Codificadores da Cadeia beta de Receptores de Linfócitos T/genética , Antígenos HLA-DQ/genética , Humanos , Epitopos Imunodominantes/genética , Ativação Linfocitária/genética , Receptores de Antígenos de Linfócitos T alfa-beta/genética
20.
Sci Rep ; 11(1): 9008, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33903675

RESUMO

The transcription factor MYB is a master regulator in haematopoietic progenitor cells and a pioneer factor affecting differentiation and proliferation of these cells. Leukaemic transformation may be promoted by high MYB levels. Despite much accumulated molecular knowledge of MYB, we still lack a comprehensive understanding of its target genes and its chromatin action. In the present work, we performed a ChIP-seq analysis of MYB in K562 cells accompanied by detailed bioinformatics analyses. We found that MYB occupies both promoters and enhancers. Five clusters (C1-C5) were found when we classified MYB peaks according to epigenetic profiles. C1 was enriched for promoters and C2 dominated by enhancers. C2-linked genes were connected to hematopoietic specific functions and had GATA factor motifs as second in frequency. C1 had in addition to MYB-motifs a significant frequency of ETS-related motifs. Combining ChIP-seq data with RNA-seq data allowed us to identify direct MYB target genes. We also compared ChIP-seq data with digital genomic footprinting. MYB is occupying nearly a third of the super-enhancers in K562. Finally, we concluded that MYB cooperates with a subset of the other highly expressed TFs in this cell line, as expected for a master regulator.


Assuntos
Sítios de Ligação , Cromatina/genética , Cromatina/metabolismo , Regulação da Expressão Gênica , Hematopoese/genética , Proteínas Proto-Oncogênicas c-myb/metabolismo , Diferenciação Celular/genética , Montagem e Desmontagem da Cromatina , Imunoprecipitação da Cromatina , Biologia Computacional/métodos , Bases de Dados Genéticas , Epigênese Genética , Epigenômica/métodos , Perfilação da Expressão Gênica , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Células K562 , Modelos Biológicos , Motivos de Nucleotídeos , Regiões Promotoras Genéticas , Ligação Proteica , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA