Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Hazard Mater ; 465: 133177, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38064947

RESUMO

The concentration of airborne microplastics is largely unknown in the remote high mountain area of the Tibetan Plateau. Here we report airborne microplastic concentrations of 2.5-58.8 n/m3 in urban, rural and wildland areas across the Tibetan Plateau, with smaller (∼89% <100 µm) fragments (>80%) dominating. Polyethylene terephthalate, polyethylene, polyamide and polystyrene were the dominant polymers of airborne microplastics on the Tibetan Plateau. Distribution of airborne microplastics was positively correlated with anthropogenic activity indices, such as population density and nighttime light intensity. Although the contribution of long-range atmospheric transport is valid, dispersed villages also appear to be a source of airborne microplastics for wildland areas across the Tibetan Plateau.

2.
Entropy (Basel) ; 21(1)2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-33266763

RESUMO

Due to the rapid urbanization development, the precipitation variability in the Taihu Lake basin (TLB) in East China has become highly complex over the last decades. However, there is limited understanding of the spatiotemporal variability of precipitation complexity and its relationship with the urbanization development in the region. In this article, by considering the whole urbanization process, we use the SampEn index to investigate the precipitation complexity and its spatial differences in different urbanization areas (old urban area, new urban area and suburbs) in TLB. Results indicate that the precipitation complexity and its changes accord well with the urbanization development process in TLB. Higher urbanization degrees correspond to greater complexity degrees of precipitation. Precipitation in old urban areas shows the greatest complexity compared with that in new urban areas and suburbs, not only for the entire precipitation process but also the precipitation extremes. There is a significant negative correlation between the annual precipitation and its SampEn value, and the same change of precipitation can cause a greater complexity change in old urbanization areas compared with the new urban areas and suburbs. It is noted that the enhanced precipitation complexity in a new urban area during recent decades cannot be ignored facing the expanding urbanization.

3.
Entropy (Basel) ; 20(12)2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-33266682

RESUMO

Detecting the spatial heterogeneity in the potential occurrence probability of water disasters is a foremost and critical issue for the prevention and mitigation of water disasters. However, it is also a challenging task due to the lack of effective approaches. In the article, the entropy index was employed and those daily rainfall data at 520 stations were used to investigate the occurrences of rainstorms in China. Results indicated that the entropy results were mainly determined by statistical characters (mean value and standard deviation) of rainfall data, and can categorically describe the spatial heterogeneity in the occurrence of rainstorms by considering both their occurrence frequencies and magnitudes. Smaller entropy values mean that rainstorm events with bigger magnitudes were more likely to occur. Moreover, the spatial distribution of entropy values kept a good relationship with the hydroclimate conditions, described by the aridity index. In China, rainstorms are more to likely occur in the Pearl River basin, Southeast River basin, lower-reach of the Yangtze River basin, Huai River basin, and southwest corner of China. In summary, the entropy index can be an effective alternative for quantifying the potential occurrence probability of rainstorms. Four thresholds of entropy value were given to distinguish the occurrence frequency of rainstorms as five levels: very high, high, mid, low and very low, which can be a helpful reference for the study of daily rainstorms in other basins and regions.

4.
PLoS One ; 9(10): e110733, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25360533

RESUMO

De-noising is a substantial issue in hydrologic time series analysis, but it is a difficult task due to the defect of methods. In this paper an energy-based wavelet de-noising method was proposed. It is to remove noise by comparing energy distribution of series with the background energy distribution, which is established from Monte-Carlo test. Differing from wavelet threshold de-noising (WTD) method with the basis of wavelet coefficient thresholding, the proposed method is based on energy distribution of series. It can distinguish noise from deterministic components in series, and uncertainty of de-noising result can be quantitatively estimated using proper confidence interval, but WTD method cannot do this. Analysis of both synthetic and observed series verified the comparable power of the proposed method and WTD, but de-noising process by the former is more easily operable. The results also indicate the influences of three key factors (wavelet choice, decomposition level choice and noise content) on wavelet de-noising. Wavelet should be carefully chosen when using the proposed method. The suitable decomposition level for wavelet de-noising should correspond to series' deterministic sub-signal which has the smallest temporal scale. If too much noise is included in a series, accurate de-noising result cannot be obtained by the proposed method or WTD, but the series would show pure random but not autocorrelation characters, so de-noising is no longer needed.


Assuntos
Hidrologia , Processamento de Sinais Assistido por Computador , Estatística como Assunto/métodos , Método de Monte Carlo , Razão Sinal-Ruído , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA