RESUMO
The synthesis of a 16-residue, stable isotopically labeled peptide is described for use as a LC-MS/MS (Liquid chromatography-mass spectrometry/mass spectrometry) internal standard in bioanalytical studies. This peptide serves as a single universal surrogate peptide capable of quantifying a wide variety of immunoglobulin G and Fc-fusion protein drug candidates in animal species used in pre-clinical drug development studies. An efficient synthesis approach for this peptide was developed using microwave-assisted solid phase peptide synthesis (SPPS) techniques, which included the use of a pseudoproline dipeptide derivative. The corresponding conventional room temperature SPPS was unsuccessful and gave only mixtures of truncated products. Stable-labeled leucine was incorporated as a single residue via manual coupling of commercially available Fmoc-[(13) C6 , (15) N]-l-leucine onto an 11-unit segment followed by automated microwave-assisted elaboration of the final four residues. Using this approach, the desired labeled peptide was prepared in high purity and in sufficient quantities for long-term supplies as a bioanalytical internal standard. The results strongly demonstrate the importance of utilizing both microwave-assisted peptide synthesis and pseudoproline dipeptide techniques to allow the preparation of labeled peptides with highly lipophilic and sterically hindered side-chains.