Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Res Sq ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38946995

RESUMO

The consumption of alcohol and caffeine affects the lives of billions of individuals worldwide. Although recent evidence indicates that caffeine impairs the reinforcing properties of alcohol, a characterization of its effects on alcohol-stimulated mesolimbic dopamine (DA) function was lacking. Acting as the pro-drug of salsolinol, alcohol excites DA neurons in the posterior ventral tegmental area (pVTA) and increases DA release in the nucleus accumbens shell (AcbSh). Here we show that caffeine, via antagonistic activity on A2A adenosine receptors (A2AR), prevents alcohol-dependent activation of mesolimbic DA function as assessed, in-vivo, by brain microdialysis of AcbSh DA and, in-vitro, by electrophysiological recordings of pVTA DA neuronal firing. Accordingly, while the A1R antagonist DPCPX fails to prevent the effects of alcohol on DA function, both caffeine and the A2AR antagonist SCH 58261 prevent alcohol-dependent pVTA generation of salsolinol and increase in AcbSh DA in-vivo, as well as alcohol-dependent excitation of pVTA DA neurons in-vitro. However, caffeine also prevents direct salsolinol- and morphine-stimulated DA function, suggesting that it can exert these inhibitory effects also independently from affecting alcohol-induced salsolinol formation or bioavailability. Finally, untargeted metabolomics of the pVTA showcases that caffeine antagonizes alcohol-mediated effects on molecules (e.g. phosphatidylcholines, fatty amides, carnitines) involved in lipid signaling and energy metabolism, which could represent an additional salsolinol-independent mechanism of caffeine in impairing alcohol-mediated stimulation of mesolimbic DA transmission. In conclusion, the outcomes of this study strengthen the potential of caffeine, as well as of A2AR antagonists, for future development of preventive/therapeutic strategies for alcohol use disorder.

2.
Mol Cell Proteomics ; : 100803, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38880242

RESUMO

Substance use disorder is a major concern, with few therapeutic options. Heparan sulfate (HS) and chondroitin sulfate (CS) interact with a plethora of growth factors and their receptors and have profound effects on cellular signaling. Thus, targeting these dynamic interactions might represent a potential novel therapeutic modality. In the present study, we performed mass spectrometry-based glycomic and proteomic analysis to understand the effects of cocaine and methamphetamine (METH) on HS, CS, and the proteome of two brain regions critically involved in drug addiction: the lateral hypothalamus (LH) and the striatum (ST). We observed that cocaine and METH significantly alter HS and CS abundances as well as sulfate contents and composition. In particular, repeated METH or cocaine treatments reduced CS 4-O-sulfation and increased CS 6-O-sulfation. Since C4S and C6S exercise differential effects on axon growth, regeneration and plasticity, these changes likely contribute to drug-induced neural plasticity in these brain regions. Notably, we observed that restoring these alterations by increasing CS 4-0 levels in the LH by adeno-associated virus (AAV) delivery of an shRNA to Arylsulfatase B (N-acetylgalactosamine-4-sulfatase, ARSB) ameliorated anxiety and prevented the expression of preference for cocaine in a novelty induced conditioned place preference test during cocaine withdrawal. Finally, proteomics analyses revealed a number of aberrant proteins in METH- and cocaine-treated vs. saline-treated mice, including MYPR, KCC2A, SYN2, TENR, CALX, ANXA7, HDGF, NCAN, and CSPG5, and oxidative phosphorylation among the top perturbed pathway. Taken together, these data support the role of HS, CS, and associated proteins in stimulants abuse and suggest that manipulation of HSPGs can represent a novel therapeutic strategy.

3.
Res Sq ; 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37886546

RESUMO

The stomach-derived hormone ghrelin regulates essential physiological functions. The ghrelin receptor (GHSR) has ligand-independent actions, therefore, GHSR gene deletion may be a reasonable approach to investigate the role of this system in feeding behaviors and diet-induced obesity (DIO). Here we investigated the effects of a long-term (12 month) high-fat (HFD) versus regular diet on obesity-related measures in global GHSR-KO and wild type (WT) Wistar male and female rats. Our main findings were that the GHSR gene deletion protects against DIO and decreases food intake during HFD in male but not in female rats. GHSR gene deletion increased thermogenesis and brain glucose uptake in male rats and modified the effects of HFD on brain glucose metabolism in a sex-specific manner, as assessed with small animal positron emission tomography. RNA-sequencing was also used to show that GHSR-KO rats had upregulated expression of genes responsible for fat oxidation in brown adipose tissue. Central administration of a novel GHSR inverse agonist, PF-5190457, attenuated ghrelin-induced food intake, but only in male, not in female mice. HFD-induced binge-like eating was reduced by inverse agonism in both sexes. Our results support GHSR as a promising target for new pharmacotherapies for obesity.

4.
eNeuro ; 10(7)2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37308288

RESUMO

The impact of alcohol abuse on Alzheimer's disease (AD) is poorly understood. Here, we show that the onset of neurocognitive impairment in a mouse model of AD is hastened by repeated alcohol intoxication through exposure to alcohol vapor, and we provide a comprehensive gene expression dataset of the prefrontal cortex by the single-nucleus RNA sequencing of 113,242 cells. We observed a broad dysregulation of gene expression that involves neuronal excitability, neurodegeneration, and inflammation, including interferon genes. Several genes previously associated with AD in humans by genome-wide association studies were differentially regulated in specific neuronal populations. The gene expression signatures of AD mice with a history of alcohol intoxication showed greater similarity to the signatures of older AD mice with advanced disease and cognitive impairment than did the gene expression signatures of AD mice not exposed to alcohol, suggesting that alcohol promotes transcriptional changes consistent with AD progression. Our gene expression dataset at the single-cell level provides a unique resource for investigations of the molecular bases of the detrimental role of excessive alcohol intake in AD.


Assuntos
Intoxicação Alcoólica , Doença de Alzheimer , Disfunção Cognitiva , Camundongos , Animais , Humanos , Doença de Alzheimer/metabolismo , Transcriptoma , Intoxicação Alcoólica/complicações , Estudo de Associação Genômica Ampla , Camundongos Transgênicos , Disfunção Cognitiva/induzido quimicamente , Modelos Animais de Doenças
5.
Am J Drug Alcohol Abuse ; 48(6): 662-672, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36095322

RESUMO

Background: Recent work has demonstrated that acute administration of the novel positive allosteric modulator of the GABAB receptor, COR659, reduces several alcohol-related behaviors in rodents.Objective: To assess whether COR659 continues to lessen alcohol intake after repeated administration, a fundamental feature of drugs with therapeutic potential.Methods: Male C57BL/6J mice (n = 40) were exposed to daily 2-hour drinking sessions (20% (v/v) alcohol) under the 1-bottle "drinking in the dark" protocol and male Sardinian alcohol-preferring rats (n = 40) were exposed to daily 1-hour drinking sessions under the 2-bottle "alcohol (10%, v/v) vs water" choice regimen. COR659 (0, 10, 20, and 40 mg/kg in the mouse experiment; 0, 5, 10, and 20 mg/kg in the rat experiment) was administered intraperitoneally before 7 consecutive drinking sessions.Results: Alcohol intake in vehicle-treated mice and rats averaged 2.5-3.0 and 1.5-1.6 g/kg/session, respectively, indicative of high basal levels. In both experiments, treatment with COR659 resulted in an initial, dose-related suppression of alcohol intake (up to 70-80% compared to vehicle treatment; P < .0005 and P < .0001 in mouse and rat experiments, respectively). The magnitude of the reducing effect of COR659 on alcohol drinking diminished progressively, until vanishing over the subsequent 2-4 drinking sessions.Conclusion: COR659 effectively reduced alcohol intake in two different rodent models of excessive alcohol drinking. However, tolerance to the anti-alcohol effects of COR659 developed rapidly. If theoretically transposed to humans, these data would represent a possible limitation to the clinical use of COR659.


Assuntos
Consumo de Bebidas Alcoólicas , Receptores de GABA-B , Animais , Masculino , Camundongos , Ratos , Consumo de Bebidas Alcoólicas/tratamento farmacológico , Ácido gama-Aminobutírico , Camundongos Endogâmicos C57BL , Receptores de GABA-B/efeitos dos fármacos
6.
Viruses ; 14(4)2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35458399

RESUMO

Substance use disorder is associated with accelerated disease progression in people with human immunodeficiency virus (HIV; PWH). Problem opioid use, including high-dose opioid therapy, prescription drug misuse, and opioid abuse, is high and increasing in the PWH population. Oxycodone is a broadly prescribed opioid in both the general population and PWH. Here, we allowed HIV transgenic (Tg) rats and wildtype (WT) littermates to intravenously self-administer oxycodone under short-access (ShA) conditions, which led to moderate, stable, "recreational"-like levels of drug intake, or under long-access (LgA) conditions, which led to escalated (dependent) drug intake. HIV Tg rats with histories of oxycodone self-administration under LgA conditions exhibited significant impairment in memory performance in the novel object recognition (NOR) paradigm. RNA-sequencing expression profiling of the medial prefrontal cortex (mPFC) in HIV Tg rats that self-administered oxycodone under ShA conditions exhibited greater transcriptional evidence of inflammation than WT rats that self-administered oxycodone under the same conditions. HIV Tg rats that self-administered oxycodone under LgA conditions exhibited transcriptional evidence of an increase in neuronal injury and neurodegeneration compared with WT rats under the same conditions. Gene expression analysis indicated that glucocorticoid-dependent adaptations contributed to the gene expression effects of oxycodone self-administration. Overall, the present results indicate that a history of opioid intake promotes neuroinflammation and glucocorticoid dysregulation, and excessive opioid intake is associated with neurotoxicity and cognitive impairment in HIV Tg rats.


Assuntos
Disfunção Cognitiva , Infecções por HIV , Analgésicos Opioides/efeitos adversos , Animais , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/complicações , Glucocorticoides , HIV , Infecções por HIV/complicações , Humanos , Oxicodona/efeitos adversos , Ratos , Ratos Transgênicos
7.
Psychopharmacology (Berl) ; 239(1): 201-213, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34812900

RESUMO

RATIONALE: Binge drinking (BD) is a widespread drinkingpattern that may contribute to promote the development of alcohol use disorder (AUD). The comprehension of its neurobiological basis and the identification of molecules that may prevent BD are critical. Preclinical studies demonstrated that positive allosteric modulators (PAMs) of the GABAB receptor effectively reduced, and occasionally suppressed, the reinforcing and motivational properties of alcohol in rodents, suggesting their potential use as pharmacotherapy for AUD, including BD. Recently, we demonstrated that COR659, a novel GABAB PAM, effectively reduced (i) alcohol drinking under the 2-bottle choice regimen, (ii) alcohol self-administration under both fixed and progressive ratio schedules of reinforcement, and (iii) cue-induced reinstatement of alcohol-seeking behavior in Sardinian alcohol-preferring (sP) rats. OBJECTIVES: The present study investigated whether the "anti-alcohol" properties of COR659 extend to binge-like drinking in rodents. METHODS: COR659 was tested on the "drinking in the dark" (DID) paradigm in C57BL/6J mice and the 4-bottle "alcohol [10%, 20%, 30% (v/v)] versus water" choice regimen with limited and unpredictable access to alcohol in sP rats. RESULTS: Acute administration of non-sedative doses of COR659 (10, 20, and 40 mg/kg; i.p.) effectively and selectively suppressed the intake of intoxicating amounts of alcohol (> 2 g/kg) consumed by C57BL/6J mice and sP rats exposed to these binge-like drinking experimental procedures. CONCLUSIONS: The present data demonstrate the ability of COR659 to suppress binge-like drinking in rodents and strengthen the hypothesis that GABAB PAMs may represent a potentially effective pharmacotherapy for alcohol misuse.


Assuntos
Consumo de Bebidas Alcoólicas , Receptores de GABA-B , Animais , Etanol , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Autoadministração , Ácido gama-Aminobutírico
8.
Sci Rep ; 11(1): 12176, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34108514

RESUMO

To generate new mechanistic hypotheses on the pathogenesis and disease progression of neuroHIV and identify novel therapeutic targets to improve neuropsychological function in people with HIV, we investigated host genes and pathway dysregulations associated with brain HIV RNA load in gene expression profiles of the frontal cortex, basal ganglia, and white matter of HIV+ patients. Pathway analyses showed that host genes correlated with HIV expression in all three brain regions were predominantly related to inflammation, neurodegeneration, and bioenergetics. HIV RNA load directly correlated particularly with inflammation genesets representative of cytokine signaling, and this was more prominent in white matter and the basal ganglia. Increases in interferon signaling were correlated with high brain HIV RNA load in the basal ganglia and the white matter although not in the frontal cortex. Brain HIV RNA load was inversely correlated with genesets that are indicative of neuronal and synaptic genes, particularly in the cortex, indicative of synaptic injury and neurodegeneration. Brain HIV RNA load was inversely correlated with genesets that are representative of oxidative phosphorylation, electron transfer, and the tricarboxylic acid cycle in all three brain regions. Mitochondrial dysfunction has been implicated in the toxicity of some antiretrovirals, and these results indicate that mitochondrial dysfunction is also associated with productive HIV infection. Genes and pathways correlated with brain HIV RNA load suggest potential therapeutic targets to ameliorate neuropsychological functioning in people living with HIV.


Assuntos
Encéfalo/patologia , Doenças do Sistema Nervoso Central/diagnóstico , Infecções por HIV/complicações , HIV-1/fisiologia , RNA Viral/genética , Transcriptoma , Carga Viral , Animais , Encéfalo/metabolismo , Encéfalo/virologia , Doenças do Sistema Nervoso Central/epidemiologia , Doenças do Sistema Nervoso Central/genética , Infecções por HIV/virologia , Humanos , Masculino , Ratos , Ratos Transgênicos , Ratos Wistar , Estados Unidos/epidemiologia
9.
Biomolecules ; 11(2)2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33525507

RESUMO

Neuroblastoma (NBL) is a pediatric cancer responsible for more than 15% of cancer deaths in children, with 800 new cases each year in the United States alone. Genomic amplification of the MYC oncogene family member MYCN characterizes a subset of high-risk pediatric neuroblastomas. Several cellular models have been implemented to study this disease over the years. Two of these, SK-N-BE-2-C (BE2C) and Kelly, are amongst the most used worldwide as models of MYCN-Amplified human NBL. Here, we provide a transcriptome-wide quantitative measurement of gene expression and transcriptional network activity in BE2C and Kelly cell lines at an unprecedented single-cell resolution. We obtained 1105 Kelly and 962 BE2C unsynchronized cells, with an average number of mapped reads/cell of roughly 38,000. The single-cell data recapitulate gene expression signatures previously generated from bulk RNA-Seq. We highlight low variance for commonly used housekeeping genes between different cells (ACTB, B2M and GAPDH), while showing higher than expected variance for metallothionein transcripts in Kelly cells. The high number of samples, despite the relatively low read coverage of single cells, allowed for robust pathway enrichment analysis and master regulator analysis (MRA), both of which highlight the more mesenchymal nature of BE2C cells as compared to Kelly cells, and the upregulation of TWIST1 and DNAJC1 transcriptional networks. We further defined master regulators at the single cell level and showed that MYCN is not constantly active or expressed within Kelly and BE2C cells, independently of cell cycle phase. The dataset, alongside a detailed and commented programming protocol to analyze it, is fully shared and reusable.


Assuntos
Regulação Neoplásica da Expressão Gênica , Proteína Proto-Oncogênica N-Myc/genética , Neuroblastoma/metabolismo , Análise de Célula Única/métodos , Transcrição Gênica , Ciclo Celular , Linhagem Celular Tumoral , Amplificação de Genes , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Genoma Humano , Humanos , Proteínas Oncogênicas/genética , RNA Mensageiro/genética , RNA-Seq , Transcriptoma , Regulação para Cima
10.
Brain Res ; 1726: 146502, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31605699

RESUMO

The abuse of stimulants, such as methamphetamine (METH), is associated with treatment non-compliance, a greater risk of viral transmission, and the more rapid clinical progression of immunological and central nervous system human immunodeficiency virus (HIV) disease. The behavioral effects of METH in the setting of HIV remain largely uncharacterized. We used a state-of-the-art paradigm of the escalation of voluntary intravenous drug self-administration in HIV transgenic (Tg) and wildtype rats. The rats were first allowed to self-administer METH under short-access (ShA) conditions, which is characterized by a nondependent and more "recreational" pattern of METH use, and then allowed to self-administer METH under long-access (LgA) conditions, which leads to compulsive (dependent) METH intake. HIV Tg and wildtype rats self-administered equal amounts of METH under ShA conditions. HIV Tg rats self-administered METH under LgA conditions following a 4-week enforced abstinence period to model the intermittent pattern of stimulant abuse in humans. These HIV Tg rats developed greater motivation to self-administer METH and self-administered larger amounts of METH. Impairments in function of the medial prefrontal cortex (mPFC) contribute to compulsive drug and alcohol intake. Gene expression profiling of the mPFC in HIV Tg rats with a history of escalated METH self-administration under LgA conditions showed transcriptional evidence of increased inflammation, greater neural injury, and impaired aerobic glucose metabolism than wildtype rats that self-administered METH under LgA conditions. The detrimental effects of the interaction between neuroHIV and escalated METH intake on the mPFC are likely key factors in the greater vulnerability to excessive drug intake in the setting of HIV.


Assuntos
Estimulantes do Sistema Nervoso Central/administração & dosagem , Comportamento Compulsivo/complicações , Encefalite/complicações , Infecções por HIV/complicações , Infecções por HIV/metabolismo , Metanfetamina/administração & dosagem , Animais , Comportamento Compulsivo/virologia , Encefalite/metabolismo , Encefalite/virologia , Expressão Gênica/efeitos dos fármacos , Masculino , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/virologia , Ratos Transgênicos
11.
iScience ; 22: 557-570, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31863782

RESUMO

The endogenous melanocortin peptide agouti-related protein (AgRP) plays a well-known role in foraging, but its contribution to metabolic regulation is less understood. Mature AgRP(83-132) has distinct residues for melanocortin receptor binding and heparan sulfate interactions. Here, we show that AgRP increases ad libitum feeding and operant responding for food in mice, decreases oxygen consumption, and lowers body temperature and activity, indicating lower energy expenditure. AgRP increased the respiratory exchange ratio, indicating a reduction of fat oxidation and a shift toward carbohydrates as the primary fuel source. The duration and intensity of AgRP's effects depended on the density of its positively charged amino acids, suggesting that its orexigenic and metabolic effects depend on its affinity for heparan sulfate. These findings may have major clinical implications by unveiling the critical involvement of interactions between AgRP and heparan sulfate to the central regulation of energy expenditure, fat utilization, and possibly their contribution to metabolic disease.

12.
Brain Res ; 1724: 146431, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31491420

RESUMO

The hippocampus is involved in key neuronal circuits that underlie cognition, memory, and anxiety, and it is increasingly recognized as a vulnerable structure that contributes to the pathogenesis of HIV-associated neurocognitive disorder (HAND). However, the mechanisms responsible for hippocampal dysfunction in neuroHIV remain unknown. The present study used HIV transgenic (Tg) rats and patch-clamp electrophysiological techniques to study the effects of the chronic low-level expression of HIV proteins on hippocampal CA1 pyramidal neurons. The dorsal and ventral areas of the hippocampus are involved in different neurocircuits and thus were evaluated separately. We found a significant decrease in the intrinsic excitability of CA1 neurons in the dorsal hippocampus in HIV Tg rats by comparing neuronal spiking induced by current step injections and by dynamic clamp to simulate neuronal spiking activity. The decrease in excitability in the dorsal hippocampus was accompanied by a higher rate of excitatory postsynaptic currents (EPSCs), whereas CA1 pyramidal neurons in the ventral hippocampus in HIV Tg rats had higher EPSC amplitudes. We also observed a reduction of hyperpolarization-activated nonspecific cationic current (Ih) in both the dorsal and ventral hippocampus. Neurotoxic HIV proteins have been shown to increase neuronal excitation. The lower excitability of CA1 pyramidal neurons that was observed herein may represent maladaptive homeostatic plasticity that seeks to stabilize baseline neuronal firing activity but may disrupt neural network function and contribute to HIV-associated neuropsychological disorders, such as HAND and depression.


Assuntos
Complexo AIDS Demência/fisiopatologia , Região CA1 Hipocampal/metabolismo , Infecções por HIV/fisiopatologia , Animais , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , HIV/patogenicidade , Infecções por HIV/metabolismo , Hipocampo/metabolismo , Memória , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp/métodos , Células Piramidais/fisiologia , Ratos , Ratos Transgênicos , Ratos Wistar
13.
Alcohol Alcohol ; 54(5): 497-502, 2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-31535696

RESUMO

AIMS: The development of novel and more effective medications for alcohol use disorder (AUD) is an important unmet medical need. Drug repositioning or repurposing is an appealing strategy to bring new therapies to the clinic because it greatly reduces the overall costs of drug development and expedites the availability of treatments to those who need them. Probenecid, p-(di-n-propylsulfamyl)-benzoic acid, is a drug used clinically to treat hyperuricemia and gout due to its activity as an inhibitor of the kidneys' organic anion transporter that reclaims uric acid from urine. Probenecid also inhibits pannexin1 channels that are involved in purinergic neurotransmission and inflammation, which have been implicated in alcohol's effects and motivation for alcohol. Therefore, we tested the effects of probenecid on alcohol intake in rodents. METHODS: We tested the effects of probenecid on operant oral alcohol self-administration in alcohol-dependent rats during acute withdrawal as well as in nondependent rats and in the drinking-in-the-dark (DID) paradigm of binge-like drinking in mice. RESULTS: Probenecid reduced alcohol intake in both dependent and nondependent rats and in the DID paradigm in mice without affecting water or saccharin intake, indicating that probenecid's effect was selective for alcohol and not the result of a general reduction in reward. CONCLUSIONS: These results raise the possibility that pannexin1 is a novel therapeutic target for the treatment of AUD. The clinical use of probenecid has been found to be generally safe, suggesting that it can be a candidate for drug repositioning for the treatment of AUD.


Assuntos
Consumo de Bebidas Alcoólicas/tratamento farmacológico , Alcoolismo/tratamento farmacológico , Conexinas/antagonistas & inibidores , Sistemas de Liberação de Medicamentos/métodos , Etanol/administração & dosagem , Proteínas do Tecido Nervoso/antagonistas & inibidores , Probenecid/uso terapêutico , Adjuvantes Farmacêuticos/farmacologia , Adjuvantes Farmacêuticos/uso terapêutico , Consumo de Bebidas Alcoólicas/metabolismo , Consumo de Bebidas Alcoólicas/psicologia , Alcoolismo/metabolismo , Alcoolismo/psicologia , Animais , Conexinas/metabolismo , Relação Dose-Resposta a Droga , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo , Probenecid/farmacologia , Ratos , Ratos Wistar , Autoadministração
14.
PLoS One ; 14(1): e0203566, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30653517

RESUMO

Internal RNA modifications have been known for decades, however their roles in mRNA regulation have only recently started to be elucidated. Here we investigated the most abundant mRNA modification, N6-methyladenosine (m6A) in transcripts from the hippocampus of HIV transgenic (Tg) rats. The distribution of m6A peaks within HIV transcripts in HIV Tg rats largely corresponded to the ones observed for HIV transcripts in cell lines and T cells. Host transcripts were found to be differentially m6A methylated in HIV Tg rats. The functional roles of the differentially m6A methylated pathways in HIV Tg rats is consistent with a key role of RNA methylation in the regulation of the brain transcriptome in chronic HIV disease. In particular, host transcripts show significant differential m6A methylation of genes involved in several pathways related to neural function, suggestive of synaptodendritic injury and neurodegeneration, inflammation and immune response, as well as RNA processing and metabolism, such as splicing. Changes in m6A methylation were usually positively correlated with differential expression, while differential m6A methylation of pathways involved in RNA processing were more likely to be negatively correlated with gene expression changes. Thus, sets of differentially m6A methylated, functionally-related transcripts appear to be involved in coordinated transcriptional responses in the context of chronic HIV. Altogether, our results support that m6A methylation represents an additional layer of regulation of HIV and host gene expression in vivo that contributes significantly to the transcriptional effects of chronic HIV.


Assuntos
Complexo AIDS Demência/genética , HIV-1/genética , Hipocampo/patologia , RNA Mensageiro/genética , Transcriptoma/genética , Complexo AIDS Demência/imunologia , Complexo AIDS Demência/patologia , Complexo AIDS Demência/virologia , Adenosina/análogos & derivados , Adenosina/metabolismo , Animais , Modelos Animais de Doenças , Epigênese Genética/genética , Epigênese Genética/imunologia , Regulação da Expressão Gênica/imunologia , HIV-1/imunologia , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Masculino , Metilação , Splicing de RNA/genética , RNA Mensageiro/isolamento & purificação , RNA Viral/genética , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Análise de Sequência de RNA , Transcriptoma/imunologia
15.
Nature ; 557(7705): 375-380, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29743677

RESUMO

The transcriptional programs that establish neuronal identity evolved to produce the rich diversity of neuronal cell types that arise sequentially during development. Remarkably, transient expression of certain transcription factors can also endow non-neural cells with neuronal properties. The relationship between reprogramming factors and the transcriptional networks that produce neuronal identity and diversity remains largely unknown. Here, from a screen of 598 pairs of transcription factors, we identify 76 pairs of transcription factors that induce mouse fibroblasts to differentiate into cells with neuronal features. By comparing the transcriptomes of these induced neuronal cells (iN cells) with those of endogenous neurons, we define a 'core' cell-autonomous neuronal signature. The iN cells also exhibit diversity; each transcription factor pair produces iN cells with unique transcriptional patterns that can predict their pharmacological responses. By linking distinct transcription factor input 'codes' to defined transcriptional outputs, this study delineates cell-autonomous features of neuronal identity and diversity and expands the reprogramming toolbox to facilitate engineering of induced neurons with desired patterns of gene expression and related functional properties.


Assuntos
Reprogramação Celular/genética , Neurônios/citologia , Neurônios/metabolismo , Animais , Fibroblastos/citologia , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Neurônios/efeitos dos fármacos , Análise de Sequência de RNA , Análise de Célula Única , Fatores de Transcrição/metabolismo , Transcriptoma/genética
16.
Psychopharmacology (Berl) ; 234(23-24): 3485-3498, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28986608

RESUMO

RATIONALE: Drugs of abuse can alter circuit dynamics by modifying synaptic efficacy and/or the intrinsic membrane properties of neurons. The juxtacapsular subdivision of the bed nucleus of stria terminalis (jcBNST) has unique connectivity that positions it to integrate cortical and amygdala inputs and provide feed-forward inhibition to the central nucleus of the amygdala (CeA), among other regions. In this study, we investigated changes in the synaptic and intrinsic properties of neurons in the rat jcBNST during protracted withdrawal from morphine dependence using a combination of conventional electrophysiological methods and the dynamic clamp technique. RESULTS: A history of opiate dependence induced a form of cell type-specific plasticity characterized by reduced inward rectification associated with more depolarized resting membrane potentials and increased membrane resistance. This cell type also showed a lower rheobase when stimulated with direct current (DC) pulses as well as a decreased firing threshold under simulated synaptic bombardment with the dynamic clamp. Morphine dependence also decreased excitatory postsynaptic potential amplification, suggesting the downregulation of the persistent Na+ current (I NaP). CONCLUSION: These findings show that a history of morphine dependence leads to persistent cell type-specific plasticity of the passive membrane properties of a jcBNST neuronal population, leading to an overall increased excitability of such neurons. By altering the activity of extended amygdala circuits where they are embedded, changes in the integration properties of jcBNST neurons may contribute to emotional dysregulation associated with drug dependence and withdrawal.


Assuntos
Potenciais Pós-Sinápticos Excitadores/fisiologia , Plasticidade Neuronal/fisiologia , Transtornos Relacionados ao Uso de Opioides/patologia , Núcleos Septais/citologia , Núcleos Septais/fisiologia , Animais , Masculino , Neurônios/patologia , Neurônios/fisiologia , Transtornos Relacionados ao Uso de Opioides/fisiopatologia , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley , Sinapses/patologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia
17.
Sci Rep ; 7(1): 13931, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-29066725

RESUMO

Substance abuse is a pressing problem with few therapeutic options. The identification of addiction resilience factors is a potential strategy to identify new mechanisms that can be targeted therapeutically. Heparan sulfate (HS) is a linear sulfated polysaccharide that is a component of the cell surface and extracellular matrix. Heparan sulfate modulates the activity and distribution of a set of negatively charged signaling peptides and proteins - known as the HS interactome - by acting as a co-receptor or alternative receptor for growth factors and other signaling peptides and sequestering and localizing them, among other actions. Here, we show that stimulants like cocaine and methamphetamine greatly increase HS content and sulfation levels in the lateral hypothalamus and that HS contributes to the regulation of cocaine seeking and taking. The ability of the HS-binding neuropeptide glial-cell-line-derived neurotrophic factor (GDNF) to increase cocaine intake was potentiated by a deletion that abolished its HS binding. The delivery of heparanase, the endo-ß-D-glucuronidase that degrades HS, accelerated the acquisition of cocaine self-administration and promoted persistent responding during extinction. Altogether, these results indicate that HS is a resilience factor for cocaine abuse and a novel therapeutic target for the treatment of cocaine addiction.


Assuntos
Transtornos Relacionados ao Uso de Cocaína/tratamento farmacológico , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Heparitina Sulfato/metabolismo , Terapia de Alvo Molecular , Animais , Transporte Biológico/efeitos dos fármacos , Cocaína/metabolismo , Cocaína/farmacologia , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Masculino , Metanfetamina/farmacologia , Camundongos , Fatores de Tempo
18.
PLoS One ; 12(4): e0175316, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28445538

RESUMO

The pathogenesis and nosology of HIV-associated neurological disease (HAND) remain incompletely understood. Here, to provide new insight into the molecular events leading to neurocognitive impairments (NCI) in HIV infection, we analyzed pathway dysregulations in gene expression profiles of HIV-infected patients with or without NCI and HIV encephalitis (HIVE) and control subjects. The Gene Set Enrichment Analysis (GSEA) algorithm was used for pathway analyses in conjunction with the Molecular Signatures Database collection of canonical pathways (MSigDb). We analyzed pathway dysregulations in gene expression profiles of patients from the National NeuroAIDS Tissue Consortium (NNTC), which consists of samples from 3 different brain regions, including white matter, basal ganglia and frontal cortex of HIV-infected and control patients. While HIVE is characterized by widespread, uncontrolled inflammation and tissue damage, substantial gene expression evidence of induction of interferon (IFN), cytokines and tissue injury is apparent in all brain regions studied, even in the absence of NCI. Various degrees of white matter changes were present in all HIV-infected subjects and were the primary manifestation in patients with NCI in the absence of HIVE. In particular, NCI in patients without HIVE in the NNTC sample is associated with white matter expression of chemokines, cytokines and ß-defensins, without significant activation of IFN. Altogether, the results identified distinct pathways differentially regulated over the course of neurological disease in HIV infection and provide a new perspective on the dynamics of pathogenic processes in the course of HIV neurological disease in humans. These results also demonstrate the power of the systems biology analyses and indicate that the establishment of larger human gene expression profile datasets will have the potential to provide novel mechanistic insight into the pathogenesis of neurological disease in HIV infection and identify better therapeutic targets for NCI.


Assuntos
Encéfalo/metabolismo , Infecções por HIV/patologia , Doenças do Sistema Nervoso/patologia , Transcriptoma , Gânglios da Base/metabolismo , Estudos de Casos e Controles , Quimiocinas/metabolismo , Citocinas/metabolismo , Lobo Frontal/metabolismo , Infecções por HIV/complicações , Infecções por HIV/metabolismo , Humanos , Doenças do Sistema Nervoso/etiologia , Doenças do Sistema Nervoso/metabolismo , beta-Defensinas/metabolismo
19.
Brain ; 140(3): 582-598, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28137726

RESUMO

New research suggests that common pathways are altered in many neurodevelopmental disorders including autism spectrum disorder; however, little is known about early molecular events that contribute to the pathology of these diseases. The study of monogenic, neurodevelopmental disorders with a high incidence of autistic behaviours, such as fragile X syndrome, has the potential to identify genes and pathways that are dysregulated in autism spectrum disorder as well as fragile X syndrome. In vitro generation of human disease-relevant cell types provides the ability to investigate aspects of disease that are impossible to study in patients or animal models. Differentiation of human pluripotent stem cells recapitulates development of the neocortex, an area affected in both fragile X syndrome and autism spectrum disorder. We have generated induced human pluripotent stem cells from several individuals clinically diagnosed with fragile X syndrome and autism spectrum disorder. When differentiated to dorsal forebrain cell fates, our fragile X syndrome human pluripotent stem cell lines exhibited reproducible aberrant neurogenic phenotypes. Using global gene expression and DNA methylation profiling, we have analysed the early stages of neurogenesis in fragile X syndrome human pluripotent stem cells. We discovered aberrant DNA methylation patterns at specific genomic regions in fragile X syndrome cells, and identified dysregulated gene- and network-level correlates of fragile X syndrome that are associated with developmental signalling, cell migration, and neuronal maturation. Integration of our gene expression and epigenetic analysis identified altered epigenetic-mediated transcriptional regulation of a distinct set of genes in fragile X syndrome. These fragile X syndrome-aberrant networks are significantly enriched for genes associated with autism spectrum disorder, giving support to the idea that underlying similarities exist among these neurodevelopmental diseases.


Assuntos
Diferenciação Celular/genética , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/patologia , Regulação da Expressão Gênica/genética , Modelos Biológicos , Células-Tronco Pluripotentes/fisiologia , Animais , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/patologia , Movimento Celular/genética , Células Cultivadas , Metilação de DNA/genética , Feto , Síndrome do Cromossomo X Frágil/genética , Redes Reguladoras de Genes , Humanos , Masculino , Camundongos , Neurogênese , Transfecção , Repetições de Trinucleotídeos/genética
20.
Neurobiol Learn Mem ; 138: 121-134, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27394686

RESUMO

While the brain-derived neurotrophic factor (BDNF) gene and its multiple transcripts have been recognized as a key factor for learning, but the specific involvement of BDNF translated from BDNF transcripts with short-3' untranslated region (short 3' UTR) in learning and memory requires further analysis. In this paper, we present data to show that the transduction of hippocampal CA1 neurons with AAV9-5' UTR-BDNF (short 3' UTR)-IRES-ZsGreen and the subsequent expression of BDNF enhanced the phosphorylation of synaptic plasticity relevant proteins and improved passive avoidance and object location, but not object recognition memory. In addition, BDNF improved the relearning of object location. At higher BDNF overexpression levels, the fear behavior was accompanied with a decline in the passive avoidance memory 24h post training, and with an enhanced fear conditioning performance. In addition, these animals developed spontaneous seizures. Thus, the expression of BDNF in the hippocampal CA1 region has the potential to improve fear and object location memory in wild type mouse strains when the region and expression levels of BDNF are well controlled.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/genética , Região CA1 Hipocampal/metabolismo , Memória/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Biossíntese de Proteínas/fisiologia , Transdução de Sinais/fisiologia , Regiões 3' não Traduzidas , Animais , Aprendizagem da Esquiva/fisiologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Medo/fisiologia , Aprendizagem/fisiologia , Camundongos , Fosforilação , Sinapses/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA