Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-21096253

RESUMO

The automatic detection and segmentation of the pectoral muscle in the medio-lateral oblique view of mammograms is essential for further analysis of breast anormalies. However, it is still a very difficult task since the sizes, shapes and intensity contrasts of pectoral muscles change greatly from image to image. In this paper, an algorithm based on the shortest path on a graph is proposed to automatically detect the pectoral muscle contour. To overcome the difficulties of searching for the path between a lateral and the top margins of the image, this is first transformed, using polar coordinates. In the transformed image, the muscle boundary in amongst the shortest paths between the top and the bottom rows. A comprehensive comparison with manually-drawn contours reveals the strength of the proposed method.


Assuntos
Algoritmos , Mamografia/métodos , Músculo Esquelético/diagnóstico por imagem , Reconhecimento Automatizado de Padrão/métodos , Intensificação de Imagem Radiográfica/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Feminino , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
2.
Artigo em Inglês | MEDLINE | ID: mdl-21096595

RESUMO

Automatic pectoral muscle removal on medio-lateral oblique view of mammogram is an essential step for many mammographic processing algorithms. However, the wide variability in the position of the muscle contour, together with the similarity between in muscle and breast tissues makes the detection a difficult task. In this paper, we propose a two step procedure to detect the muscle contour. In a first step, the endpoints of the contour are predicted with a pair of support vector regression models; one model is trained to predict the intersection point of the contour with the top row while the other is designed for the prediction of the endpoint of the contour on the left column. Next, the muscle contour is computed as the shortest path between the two endpoints. A comprehensive comparison with manually-drawn contours reveals the strength of the proposed method.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Mamografia/métodos , Reconhecimento Automatizado de Padrão/métodos , Músculos Peitorais/diagnóstico por imagem , Intensificação de Imagem Radiográfica/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Técnica de Subtração , Algoritmos , Inteligência Artificial , Feminino , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA