Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Food Chem ; 453: 139596, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-38759441

RESUMO

The pecan nutshell [Carya illinoinensis (Wangenh) C. Koch] (PNS) is a source of bioactives with important beneficial properties for the human health. PNS represents between 40-50 % of total mass of the nut, resulting as waste without any added value for the food industry. Even though a variety of methods were already developed for bioactive extraction from this waste, unconventional methodologies, or those which apart from green chemistry principles, were discarded considering the cost of production, the sustainable development goals of United Nations and the feasibility of real inclusion of the technology in the food chain. Then, to add-value to this waste, a low-cost, green and easy-scalable extraction methodology was developed based on the determination of seven relevant factors by means of a factorial design and a Response Surface Methodology, allowing the extraction of bioactives with antioxidant capacity. The pecan nutshell extract had a high concentration of phenolic compounds (166 mg gallic acid equivalents-GAE/g dry weight-dw), flavonoids (90 mg catechin equivalent-CE/g dw) and condensed tannins (189 mg CE/g dw) -related also to the polymeric color (74.6 %)-, with high antioxidant capacities of ABTS+. radical inhibition (3665 µmol Trolox Equivalent-TE/g dw) and of iron reduction (1305 µmol TE/g dw). Several compounds associated with these determinations were identified by HPLC-ESI-MS/MS, such as [Epi]catechin-[Epi]catechin-[Epi]gallocatechin, myricetin, dihydroquercetins, dimers A and B of protoanthocyanidins, ellagitannins and ellagic acid derivatives. Hence, through the methodology developed here, we obtained a phenolic rich extract with possible benefits for human health, and of high industrial scalability for this co-product transformation.


Assuntos
Antioxidantes , Carya , Resíduos Industriais , Nozes , Extratos Vegetais , Carya/química , Nozes/química , Resíduos Industriais/análise , Resíduos Industriais/economia , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Antioxidantes/isolamento & purificação , Antioxidantes/química , Antioxidantes/economia , Flavonoides/isolamento & purificação , Flavonoides/química , Fenóis/isolamento & purificação , Fenóis/química , Química Verde
2.
Mol Biotechnol ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38546763

RESUMO

Lysobacter is known as a bacterial genus with biotechnological potential, producing an array of enzymes, antimicrobial metabolites, and bioactive antioxidant compounds, including aryl polyene (APE) pigments that have been described as protecting substances against photooxidative damage and lipid peroxidation. In this study, the pigment extracted from keratinolytic Lysobacter sp. A03 isolated from Antarctic environment was characterized. The results of KOH test, UV-vis spectroscopy, CIELAB color system, 1H-NMR, and FTIR-ATR spectroscopy suggest the pigment is a yellow xanthomonadin-like pigment. The in vitro antioxidant activity of the pigment was confirmed by the scavenging of ABTS and DPPH radicals. In silico analysis of the genome through antiSMASH software was also performed and the secondary metabolite gene clusters for APE and resorcinol synthesis were identified, suggesting that proteins responsible for the pigment biosynthesis are encoded in Lysobacter A03 genome.

3.
Photochem Photobiol Sci ; 23(4): 665-679, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38443738

RESUMO

Nanosized alginate-based particles (NAPs) were obtained in a one-pot solvent-free synthesis procedure, achieving the design of a biocompatible nanocarrier for the encapsulation of IbM6 antimicrobial peptide (IbM6). IbM6 is integrated in the nascent nanosized hydrogel self-assembly guided by electrostatic interactions and by weak interactions, typical of soft matter. The formation of the nanogel is a dynamic and complex process, which presents an interesting temporal evolution. In this work, we optimized the synthesis conditions of IbM6-NAPs based on small-angle X-ray scattering (SAXS) measurements and evaluated its time evolution over several weeks by sensing the IbM6 environment in IbM6-NAPs from photochemical experiments. Fluorescence deactivation experiments revealed that the accessibility of different quenchers to the IbM6 peptide embedded in NAPs is dependent on the aging time of the alginate network. Lifetimes measurements indicate that the deactivation paths of the excited state of the IbM6 in the nanoaggregates are reduced when compared with those exhibited by the peptide in aqueous solution, and are also dependent on the aging time of the nanosized alginate network. Finally, the entrapment of IbM6 in NAPs hinders the degradation of the peptide by trypsin, increasing its antimicrobial activity against Escherichia coli K-12 in simulated operation conditions.


Assuntos
Alginatos , Escherichia coli K12 , Polietilenoglicóis , Polietilenoimina , Nanogéis , Peptídeos Antimicrobianos , Espalhamento a Baixo Ângulo , Difração de Raios X , Peptídeos/farmacologia , Escherichia coli
4.
Heliyon ; 9(11): e21499, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027781

RESUMO

High-oleic palm oil is a food-grade oil with desirable properties, as it is characterised by having an oleic acid concentration above 50 % and a high vitamin E and provitamin A content. This study investigated the effect of different combinations of two wall materials (whey protein (WP) and Capsul®, a commercial octenyl succinic anhydride modified starch (OSA-MS)) on the concentration of provitamin A, vitamin E and oleic acid, and the physical properties of high oleic palm oil emulsions encapsulated by Refractance Window drying technology. Wall material composition significantly affected (p < 0.05) all response variables, and R2 values were above 0.75 for all responses. Phytonutrient preservation showed its highest at an OSA-MS: WP concentration ratio of 1: 3. Optimal results were achieved (minimum moisture content, water activity and hygroscopicity, and maximum encapsulation efficiency and phytonutrient preservation) at an OSA-MS concentration of 8.13 % and WP concentration of 91.87 %. Flakes were obtained as a solid structure that protects oil's phytonutrients with 94 %, 75 % and 87 % of preservation of oleic acid, vitamin E and carotenoids, respectively. It shows that the wall material combination and encapsulation technique are suitable for obtaining lipophilic functional compounds.

5.
Polymers (Basel) ; 15(21)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37959976

RESUMO

The stability and release properties of all bioactive capsules are strongly related to the composition of the wall material. This study aimed to evaluate the effect of the wall materials during the encapsulation process by ionotropic gelation on the viability of Lactobacillus fermentum K73, a lactic acid bacterium that has hypocholesterolemia probiotic potential. A response surface methodology experimental design was performed to improve bacterial survival during the synthesis process and under simulated gastrointestinal conditions by tuning the wall material composition (gelatin 25% w/v, sweet whey 8% v/v, and sodium alginate 1.5% w/v). An optimal mixture formulation determined that the optimal mixture must contain a volume ratio of 0.39/0.61 v/v sweet whey and sodium alginate, respectively, without gelatin, with a final bacterial concentration of 9.20 log10 CFU/mL. The mean particle diameter was 1.6 ± 0.2 mm, and the experimental encapsulation yield was 95 ± 3%. The INFOGEST model was used to evaluate the survival of probiotic beads in gastrointestinal tract conditions. Upon exposure to in the vitro conditions of oral, gastric, and intestinal phases, the encapsulated cells of L. fermentum decreased only by 0.32, 0.48, and 1.53 log10 CFU/mL, respectively, by employing the optimized formulation, thereby improving the survival of probiotic bacteria during both the encapsulation process and under gastrointestinal conditions compared to free cells. Beads were characterized using SEM and ATR-FTIR techniques.

6.
Food Chem (Oxf) ; 5: 100140, 2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36277674

RESUMO

Bioaccessibility analysis and antioxidant activity along in vitro digestion and a consumer-oriented sensory analysis were conducted in three potential functional foods based on Ca(II)-alginate beads containing bioactive compounds extracted from beet stems. Ca(II)-alginate beads per se, and two selected products (cookies and turkish delights supplemented with the beads) were prepared. Regarding the beads, among the attributes rated by consumers, visual appreciation predominates, being color in the just-as-right (JAR) category and in the like preference. Instead, both flavor and sweet taste were attributes highly penalized and should be improved in beads to be accepted as food per se. A higher percentage of customers preferred cookies and turkish delights instead of only beads, considering global satisfaction. Regarding in vitro digestion, there was a significant content of phenolic compounds in the products with beads, showing a bioaccessibility greater than 80% (for cookies) and 26% (for turkish delights). Also, the antioxidant capacity measured by ABTS ranged between 50 and 109% for cookies and turkish delights, being lower when measured by FRAP (between 20 and 30%, respectively). Thus, including the beads with beet stem extract in both products leads to a significant increase in the content of phenolic compounds and in the antioxidant capacity compared to their counterparts, protecting the compound during oral and gastric phases. These results allow the generation of improved Ca(II)-alginate systems with promising functional properties for the development of ingredients and functional foods.

7.
Carbohydr Polym ; 291: 119483, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35698322

RESUMO

In this work, we studied the development of a biocomposite formulated with alginate and gelatin, crosslinked with genipin for application as support for ß-galactosidase immobilization. Also, the biocomposites with the immobilized enzyme were characterized by thermal analyses and SAXS (size, density, and interconnectivity of alginate rods) for a detailed analysis of the microstructure, as well as the thermal and operational stabilities of the enzyme. The structural modifications of the biocomposite determined by SAXS demonstrate that the addition of both genipin and enzyme produced a significant reduction in size and density of the Ca(II)-alginate rods. Immobilized ß-galactosidase could be stored for 175 days under refrigeration maintaining 80% of its initial activity. Moreover, 90% of its relative activity was kept after 11 reuses in a batch process of lactose hydrolysis. Thus, the biocomposite proved to be effective as support for enzyme immobilization.


Assuntos
Alginatos , Aspergillus oryzae , Aspergillus oryzae/metabolismo , Estabilidade Enzimática , Enzimas Imobilizadas/química , Gelatina , Hidrólise , Iridoides , Lactose/química , Espalhamento a Baixo Ângulo , Difração de Raios X , beta-Galactosidase/metabolismo
8.
Carbohydr Polym ; 269: 118293, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34294319

RESUMO

Ca(II)-alginate beads are being produced for a broad spectrum of biotechnological uses. Despite the simplicity of their manufacturing process, in these highly complex arrangements, the final properties of the material strongly depend on the supramolecular scaffolding. Here we present a cost-effective automatized Optical Video Microscopy approach for in situ evaluation of the kinetics of alginate bead formation. With simple mathematic modeling of the acquired data, we obtained key parameters that reveal valuable information on the system: the time course of gel-front migration correlates with the plateau of the storage module, and total volume shrinkage is highly related to the stabilization of shear strain and shear stress at the yield point. Our results provide feasible and reproducible tools, which allow for a better interpretation of bead formation kinetics and a rapid screening technique to use while designing gelling materials with specific properties for technological applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA