Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Heliyon ; 10(3): e24770, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38322905

RESUMO

Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is a promising biodegradable bio-based material, which is designed for a vast range of applications, depending on its composite. This study aims to assess the degradability of a PHBV-based compound under different conditions. The research group followed different methodological approaches and assessed visual and mass changes, mechanical and morphological properties, spectroscopic and structural characterisation, along with thermal behaviour. The Ph-Stat (enzymatic degradation) test and total dry solids (TDS)/total volatile solids (TVS) measurements were carried out. Finally, the team experimentally evaluated the amount of methane and carbon dioxide produced, i.e., the degree of biodegradation under aerobic conditions. According to the results, different types of tests have shown differing effects of environmental conditions on material degradation. In conclusion, this paper provides a summary of the investigations regarding the degradation behaviour of the PHBV-based compound under varying environmental factors. The main strengths of the study lie in its multi-faceted approach, combining assessments of PHBV-based compound degradability under different conditions using various analytical tools, such as visual and mass changes, mechanical and morphological properties, spectroscopic and structural characterization, and thermal behavior. These methods collectively contribute to the robustness and reliability of the undertaken work.

2.
Int J Mol Sci ; 24(15)2023 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-37569870

RESUMO

This paper sets up a new route for producing non-covalently crosslinked bio-composites by blending poly-γ-glutamic acid (γ-PGA) of microbial origin and chitosan (CH) through poly-electrolyte complexation under specific experimental conditions. CH and two different molecular weight γ-PGA fractions have been blended at different mass ratios (1/9, 2/8 and 3/7) under acidic pH. The developed materials seemed to behave like moldable hydrogels with a soft rubbery consistency. However, after dehydration, they became exceedingly hard, glass-like materials completely insoluble in water and organic solvents. The native biopolymers and their blends underwent comprehensive structural, physicochemical, and thermal analyses. The study confirmed strong physical interactions between polysaccharide and polyamide chains, facilitated by electrostatic attraction and hydrogen bonding. The materials exhibited both crystalline and amorphous structures and demonstrated good thermal stability and degradability. Described as thermoplastic and saloplastic, these bio-composites offer vast opportunities in the realm of polyelectrolyte complexes (PECs). This unique combination of properties allowed the bio-composites to function as glass-like materials, making them highly versatile for potential applications in various fields. They hold potential for use in regenerative medicine, biomedical devices, food packaging, and 3D printing. Their environmentally friendly properties make them attractive candidates for sustainable material development in various industries.


Assuntos
Quitosana , Quitosana/química , Materiais Biocompatíveis/química , Ácido Glutâmico , Medicina Regenerativa , Polieletrólitos , Ácido Poliglutâmico/química
3.
Polymers (Basel) ; 15(14)2023 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-37514369

RESUMO

This paper highlights the potential of Sargassum algae, recovered from raw beach seaweed wastes, as a valid source of valuable sodium alginate. Alginate is a biodegradable, highly attractive polysaccharide widely used in food, pharmaceuticals, and biomedicine applications. The aim of this work is to employ a new eco-sustainable and cost-effective extractive method to obtain alginate as a raw material from pollutant organic Sargassum seaweeds. Algae were exposed to microwave pre-treatment under static and dynamic conditions, and three different extractive protocols were followed: (a) conventional, (b) hot water and (c) alkaline method. All samples were characterized by GPC, SEM, FTIR/ATR and TGA. It was found that alginate's best performances were obtained by the microwave dynamic pre-treatment method followed by alkaline extractive protocol. Nevertheless, the microwave pre-treatment of algae allowed the easiest breaking of their cell walls and the following fast releasing of sodium alginate. The authors demonstrated that microwave-enhanced extraction is an effective way to obtain sodium alginate from Sargassum-stranded seaweed waste materials in a cost-effective and eco-sustainable approach. They also assessed their applications as mulching films for agricultural applications.

4.
Molecules ; 28(3)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36770887

RESUMO

Composites made of linear low-density polyethylene (LLDPE) and ß-cyclodextrin/d-limonene inclusion complex (CD-lim) were prepared by melt extrusion to develop a novel food packaging material. Scanning electron microscopy evidenced a fairly good dispersion of the filler within the polymeric matrix. Infrared spectroscopy coupled with thermogravimetric analysis confirmed the presence of CD-lim in the composites, proving that the applied technology of including the essential oil within ß-CD cages allows for preventing a sizable loss of d-limonene despite a high temperature and shear applied upon extrusion processing. Moreover, the influence of the filler on the thermal properties of PE was assessed. It was found that the cyclodextrin-based inclusion complex significantly fastens the crystallization path of the polyethylene matrix with an improved crystallization rate of the PE/CD-lim composites compared to the neat polymer.

5.
Polymers (Basel) ; 14(20)2022 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-36297937

RESUMO

The aim of the present study was to investigate starch-based materials, prepared in an environmentally friendly way and from renewable resources, suitable for the development of biodegradable active food packaging. For this purpose, a bioactive compound (thymol) was incorporated into thermoplastic starch (TPS) and a TPS blend with poly (ε-caprolactone) (TPS-PCL) by the supercritical CO2 (scCO2) impregnation process. Impregnation experiments with scCO2 were carried out at a pressure of 30 MPa and temperatures in the range of 40-100 °C during 1 to 20 h. The structural, morphological, and thermal properties of the obtained materials were comprehensively evaluated. Bioactive component release kinetic studies were performed in water at 6 °C and 25 °C. It was shown that the scCO2 impregnation process could be successfully employed for thymol loading into TPS and TPS-PCL. The process was significantly influenced by the operating temperature and time as well as content of PCL. The samples showed a controlled release of thymol within seven days with a higher amount of released thymol from the TPS-PCL blend. The obtained materials are solvent-free and release the bioactive component in a controlled manner.

6.
Bioresour Technol ; 363: 127954, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36108577

RESUMO

Cardoon, Cynara cardunculus L. represents a biorefinery crop with a great potential in the bioplastic field. This work investigates the valorization of different cardoon components into high added value products, finally recombined into novel upgraded bioplastics. Bioprocesses for Polyhydroxybutyrate (PHB) and medium-chain-length Polyhydroxyalkanoates (mcl-PHA) production were set up starting from root inulin and seed oil respectively, highlighting the effect of process conditions on polymer properties. The ternary blend, in which the PHB polymer matrix was added with mcl-PHA and epoxidized cardoon oil, evidenced a synergic effect of both additives in modulating PHB structural and thermal properties, promoted by the physical interaction occurring among the components. This proof-of concept frames the paper in the holistic approach of circular economy applied to bioplastic production.


Assuntos
Cynara , Poli-Hidroxialcanoatos , Biomassa , Biopolímeros , Inulina , Óleos de Plantas
7.
Polymers (Basel) ; 14(12)2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35745971

RESUMO

Edible polymers such as polysaccharides, proteins, and lipids are biodegradable and biocompatible materials applied as a thin layer to the surface of food or inside the package. They enhance food quality by prolonging its shelf-life and avoiding the deterioration phenomena caused by oxidation, humidity, and microbial activity. In order to improve the biopolymer performance, antimicrobial agents and plasticizers are also included in the formulation of the main compounds utilized for edible coating packages. Secondary natural compounds (SC) are molecules not essential for growth produced by some plants, fungi, and microorganisms. SC derived from plants and fungi have attracted much attention in the food packaging industry because of their natural antimicrobial and antioxidant activities and their effect on the biofilm's mechanical properties. The antimicrobial and antioxidant activities inhibit pathogenic microorganism growth and protect food from oxidation. Furthermore, based on the biopolymer and SC used in the formulation, their specific mass ratio, the peculiar physical interaction occurring between their functional groups, and the experimental procedure adopted for edible coating preparation, the final properties as mechanical resistance and gas barrier properties can be opportunely modulated. This review summarizes the investigations on the antimicrobial, mechanical, and barrier properties of the secondary natural compounds employed in edible biopolymer-based systems used for food packaging materials.

8.
Polymers (Basel) ; 14(6)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35335520

RESUMO

Since the potentialities of applications of low molecular weight poly-γ-glutamic acid (γ-PGA) chains have been so far only partially explored, the separation of diverse molecular families of them, as well as their characterization for potential bioactivity and ability to form films, were investigated. Two different approaches based on organic solvent precipitation or on ultra- and nano-filtration membrane-based purification of inexpensive commercial material were employed to obtain size-specific γ-PGA fractions, further characterized by size exclusion chromatography equipped with a triple detector array and by ultra-high-performance liquid chromatography to assess their average molecular weight and their concentration. The γ-PGA low molecular weight fractions, purified by ultra-filtration, have been shown both to counteract the desiccation and the oxidative stress of keratinocyte monolayers. In addition, they were exploited to prepare novel hydrocolloid films by both solvent casting and thermal compression, in the presence of different concentrations of glycerol used as plasticizer. These biomaterials were characterized for their hydrophilicity, thermal and mechanical properties. The hot compression led to the attainment of less resistant but more extensible films. However, in all cases, an increase in elongation at break as a function of the glycerol content was observed. Besides, the thermal analyses of hot compressed materials demonstrated that thermal stability was increased with higher γ-PGA distribution po-lymer fractions. The obtained biomaterials might be potentially useful for applications in cosmetics and as vehicle of active molecules in the pharmaceutical field.

9.
Biomolecules ; 12(1)2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-35053237

RESUMO

Neofusiccocum batangarum is the causal agent of scabby canker of cactus pear (Opuntia ficus-indica L.). The symptoms of this disease are characterized by crusty, perennial cankers, with a leathery, brown halo. Characteristically, a viscous polysaccharide exudate, caking on contact with air, leaks from cankers and forms strips or cerebriform masses on the surface of cactus pear cladodes. When this polysaccharide mass was partial purified, surprisingly, generated a gel. The TLC analysis and the HPLC profile of methyl 2-(polyhydroxyalkyl)-3-(o-tolylthiocarbomoyl)-thiazolidine-4R-carboxylates obtained from the mixture of monosaccharides produced by acid hydrolysis of the three EPSs examined in this research work [the polysaccharide component of the exudate (EPSC) and the EPSs extracted from asymptomatic (EPSH) and symptomatic (EPSD) cladodes] showed the presence of d-galactose, l-rhamnose, and d-glucose in a 1:1:0.5 ratio in EPSC while d-galactose, l-rhamnose, d-glucose, and d-xylose at the same ratio were observed in EPSH and EPSD. The presence of uronic acid residues in EPSC was also showed by solid state NMR and IR investigation. Furthermore, this manuscript reports the chemical-physical characterization of the gel produced by the infected cactus pear.


Assuntos
Ascomicetos/crescimento & desenvolvimento , Opuntia/metabolismo , Opuntia/microbiologia , Doenças das Plantas/microbiologia , Polissacarídeos/metabolismo
10.
Carbohydr Polym ; 279: 118989, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34980348

RESUMO

Ulomoides dermestoides (UL) are macroinvertebrates insects belonging to Tenebrionidae Coleopteran family. They were used to hasten, in five days, the biodegradation-mineralization of thermoplastic starch (TPS)-poly(lactic acid) (PLA) films, otherwise biodegradable under composting conditions. After the contact of TPS-PLA film with UL for five days, TPS was metabolized and PLA was hydrolysed, as evidenced by decreasing of hydroxyl and carbonyl group peaks intensity by FTIR spectra, increasing of 13% of PLA crystallinity by DSC thermograms, reduction of PLA and TPS thermal stability by TGA analysis; faecal residues evidenced two glass transition temperature Tg, at 33 °C and 57 °C, associated with depolymerized TPS and PLA, respectively. SEM micrographs highlighted consumption of TPS-PLA surface, while GPC analysis showed a decrease in PLA concentration by 20% during contact by UL. Mineralization tests evidenced UL boosted effect on TPS biodigestion-biodegradation (80%) and PLA biodisintegration (50%), envisaging a challenging perspective for end-life management of bioplastics in environmental conditions.


Assuntos
Poliésteres/metabolismo , Amido/metabolismo , Tenebrio/metabolismo , Animais , Biodegradação Ambiental , Varredura Diferencial de Calorimetria , Fezes/química , Temperatura , Termogravimetria
11.
Foods ; 10(11)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34828864

RESUMO

This study shows the chemical-physical and nutritional results obtained using food-grade sea water for the preparation of fresh pasta Gnocchi with respect to those prepared with tap water. Gnocchi obtained by mixing the flour with seawater (GSW) were compared with traditional Gnocchi made with tap water (GTW). The contents of sodium chloride, macro and micro elements, volatile molecules profile, thermal properties, and morphological analysis were investigated in both Gnocchi types. The analysis of chlorides showed that the samples prepared with sea water had a significantly lower NaCl content after cooking in comparison with those prepared with tap water. These results were also confirmed by the inductively coupled plasma (ICP) analysis for sodium content. The profiles of the volatile molecules acquired by gas chromatography-mass spectrometry (GC-MS) evidenced significant differences between the groups of aromatic molecules of the two typologies of samples. Morphological analysis evidenced that both raw and cooked GSW Gnocchi were structurally tightened whereas GTW Gnocchi showed a labile and weak macromolecular network. In addition, GSW Gnocchi was more thermally stable than GTW Gnocchi, as evidenced by thermogravimetric analysis (TGA).

12.
Carbohydr Polym ; 272: 118442, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34420708

RESUMO

In this study, mixtures based on ß-glucans and proteins are extracted from barley, in mild (MA) and high (HA) alkaline conditions, and employed with zinc oxide (ZnO) to prepare bioactive films for wound healing. Composition of extracts and properties of resulting films depend on pH extraction conditions. MA based samples show weak physical interactions among mixture components, whereas in HA films the extent of these interactions is larger. Consequently, their chemico-physical properties are significantly different, as demonstrated by FT-IR, thermal, mechanical and morphological analyses. ZnO with its bound water molecules acts as a slight plasticizer in MA, as shown by the lower Tg and the decrease of elastic modulus. In HA, this effect is evidenced up to ZnO 1%, and above this concentration an increase of strength at break is observed. Finally, MA and HA films show intrinsic antimicrobial properties, enhanced by ZnO, which make them exploitable as wound dressings.


Assuntos
Anti-Infecciosos/farmacologia , Hordeum/química , Cicatrização/efeitos dos fármacos , Óxido de Zinco/farmacologia , beta-Glucanas/farmacologia , Anti-Infecciosos/química , Bandagens , Materiais Biocompatíveis/farmacologia , Escherichia coli/efeitos dos fármacos , Humanos , Microscopia Eletrônica de Varredura/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Staphylococcus epidermidis/efeitos dos fármacos , Resistência à Tração , Termogravimetria/métodos , Água/química , Óxido de Zinco/química , beta-Glucanas/química
13.
Materials (Basel) ; 14(10)2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-34063363

RESUMO

Bio-based composites made of poly(L-lactic acid) (PLLA) and ß-cyclodextrin/d-limonene inclusion complex (CD-Lim) were prepared by melt extrusion. Encapsulation of volatile d-limonene molecules within ß-cyclodextrin cages was proven to be a successful strategy to prevent evaporation during high-temperature processing. However, small amounts of limonene were released upon processing, resulting in the plasticization of the polymeric matrix. Morphological analysis revealed good dispersion of the filler, which acted as a nucleating agent, favoring the growth of PLLA crystals. The composites' lowered glass transition temperature upon the addition of CD-Lim was also proved by thermomechanical analysis (DMA). Moreover, DMA revealed constant stiffness of modified materials at room temperature, which is crucial in PLLA-based formulations.

14.
Polymers (Basel) ; 13(8)2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33919976

RESUMO

Citrus pomace derived from the industrial processing of juice and essential oils mostly consists of pectin, cellulose, hemicellulose, and simple sugars. In this work, citrus pomace waste from an agricultural company in South Italy was used as source of pectin. The extraction conditions of the polysaccharide were optimized using a suitable combination of time and a concentration of a mild organic solvent, such as acetic acid; thus recovering high Mw pectin and bioactive molecules (flavonoids and polyphenols). The pectin was structurally (GPC, FTIR), morphologically (SEM), thermally (TGA/DTG), and mechanically characterized, while bioactive molecules were separated and the total phenolic content (TPC) and total flavonoids content (TFC) were evaluated. With the aim to develop novel biocomposite-based materials, the pectin extracted from citrus waste was reinforced with different amounts of lignocellulose fractions also recovered from citrus waste after polysaccharide extraction, according to a "zero waste" circular economy approach. The prepared biocomposites were morphologically and mechanically characterized to be used as biodegradable mulching systems for crop protection. Thus, the citrus waste biomass was recovered, fractionated into its main raw materials, and these were recombined to develop novel upgraded biocomposites for mulching applications, by means of a cost-effective and eco-sustainable approach.

15.
Pest Manag Sci ; 77(2): 646-658, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33012130

RESUMO

BACKGROUND: The organic extracts (OEs) of Dittrichia viscosa, a ruderal plant common in the Mediterranean regions, proved to have herbicidal properties. In order to improve OE effectiveness and to develop novel eco-friendly bioherbicidal products, different amounts of OE were included in poly(butylene succinate)- and polycaprolactone-based films (PBS and PCL, respectively). Particular attention was given to the study of interactions between the polymers and OEs, with a deep spotlight concerning the influence of OEs on structural, morphological and thermal properties of both polymers, in order to assess the OE releasing kinetics from the matrices and its tuned herbicidal action against seeds. RESULTS: The bioassays carried out on Lepidium sativum and Phelipanche ramosa seeds evidenced a more controlled and effective OE release by PBS than PCL, and a longer lasting efficacy by the polymers with a higher OE content. The chemical-physical analyses were performed on films before and after biological assays. The thermogravimetric analysis confirmed that OE was a thermal stabilizer of the polymer; the presence of OE and polymer separated degradative kinetics suggested that only a partial and functional miscibility between polymers and OE occurred. The morphological analysis confirmed the good OE dispersion between PBS and PCL molecular chains. Infrared spectroscopy highlighted the enhanced hydrolysed structure of the doped polymers after the bioassays. These outcomes well matched the quantitative information outlined by release kinetics. DISCUSSION: The use of biodegradable polymers allows the effectiveness and tuning of the release of the formulated bioactive compounds to be improved. The easy-to-obtain and easy-to-formulate OE could become a suitable and environmentally friendly instrument in weed management programmes.


Assuntos
Asteraceae , Herbicidas , Herbicidas/farmacologia , Extratos Vegetais/farmacologia , Poliésteres , Polímeros
16.
Polymers (Basel) ; 12(10)2020 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-33050501

RESUMO

Compression molded biodegradable films based on poly(butylene succinate) (PBS) and poly(butylene adipate-co-terephthalate) (PBAT) at varying weights were prepared, and their relevant properties for packaging applications are here reported. The melt rheology of the blends was first studied, and the binary PBS/PBAT blends exhibited marked shear thinning and complex thermoreological behavior, due to the formation of a co-continuous morphology in the 50 wt% blend. The films were characterized by infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), mechanical tensile tests, scanning electron microscopy (SEM), and oxygen and water vapor permeability. PBS crystallization was inhibited in the blends with higher contents of PBAT, and FTIR and SEM analysis suggested that limited interactions occur between the two polymer phases. The films showed increasing stiffness as the PBS percentage increased; further, a sharp decrease in elongation at break was noticed for the films containing percentages of PBS greater than 25 wt%. Gas permeability decreased with increasing PBS content, indicating that the barrier properties of PBS can be tuned by blending with PBAT. The results obtained point out that the blend containing 25 wt% PBS is a good compromise between elastic modulus (135 MPa) and deformation at break (390%) values. Overall, PBS/PBAT blends represent an alternative for packaging films, as they combine biodegradability, good barrier properties and reasonable mechanical behavior.

17.
Carbohydr Polym ; 230: 115627, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31887941

RESUMO

In this study, chitosan (C) tripolyphosphate (T) sub-micro particles containing ungeremine (CTUn), an alkaloid particularly active against Penicilliumroqueforti, a fungus responsible of the bakery products deterioration, were prepared through external gelation crosslinking process. The particles were included in a thermoplastic starch based polymer Mater-Bi (MBi), and MBi/CTUn bioactive biocomposites were obtained. The films showed bioactivity against P. roqueforti. In particular, the bioassays were performed on films with different concentration of CTUn and at different pH values. CTUn particles influenced MBi crystallization (DSC analysis) and promoted thermal degradation of MBi starch component (TGA). Morphological analysis confirmed even distribution of sub-micro particles into the polymeric matrix. Water permeability slightly increased, as expected, whereas oxygen permeability decreased. Tensile tests showed CTUN sub-microparticles improved rigidity and tensile strength of the films at the expense of ductility. Finally, MBi/CTUn biocomposites evidenced interesting performances potentially exploitablein bioactive bakery based food packaging materials.


Assuntos
Antifúngicos/química , Quitosana/análogos & derivados , Amido/análogos & derivados , Antifúngicos/farmacologia , Embalagem de Alimentos/métodos , Nanocompostos/química , Oxigênio/química , Penicillium/efeitos dos fármacos , Resistência à Tração
18.
Front Bioeng Biotechnol ; 8: 619266, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33585417

RESUMO

The transition toward "green" alternatives to petroleum-based plastics is driven by the need for "drop-in" replacement materials able to combine characteristics of existing plastics with biodegradability and renewability features. Promising alternatives are the polyhydroxyalkanoates (PHAs), microbial biodegradable polyesters produced by a wide range of microorganisms as carbon, energy, and redox storage material, displaying properties very close to fossil-fuel-derived polyolefins. Among PHAs, polyhydroxybutyrate (PHB) is by far the most well-studied polymer. PHB is a thermoplastic polyester, with very narrow processability window, due to very low resistance to thermal degradation. Since the melting temperature of PHB is around 170-180°C, the processing temperature should be at least 180-190°C. The thermal degradation of PHB at these temperatures proceeds very quickly, causing a rapid decrease in its molecular weight. Moreover, due to its high crystallinity, PHB is stiff and brittle resulting in very poor mechanical properties with low extension at break, which limits its range of application. A further limit to the effective exploitation of these polymers is related to their production costs, which is mostly affected by the costs of the starting feedstocks. Since the first identification of PHB, researchers have faced these issues, and several strategies to improve the processability and reduce brittleness of this polymer have been developed. These approaches range from the in vivo synthesis of PHA copolymers, to the enhancement of post-synthesis PHB-based material performances, thus the addition of additives and plasticizers, acting on the crystallization process as well as on polymer glass transition temperature. In addition, reactive polymer blending with other bio-based polymers represents a versatile approach to modulate polymer properties while preserving its biodegradability. This review examines the state of the art of PHA processing, shedding light on the green and cost-effective tailored strategies aimed at modulating and optimizing polymer performances. Pioneering examples in this field will be examined, and prospects and challenges for their exploitation will be presented. Furthermore, since the establishment of a PHA-based industry passes through the designing of cost-competitive production processes, this review will inspect reported examples assessing this economic aspect, examining the most recent progresses toward process sustainability.

19.
Carbohydr Polym ; 229: 115427, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31826501

RESUMO

In this paper, lemon and fennel wastes were recovered and used as secondary-raw polysaccharide sources. These polysaccharides were exploited as natural plasticizers of sodium alginate (A) based films, in order to improve sodium alginate performances, limited by its fragility, extending its potential application in a cost effective and eco-friendly way. Different green processes, such as maceration (MAC), ultrasound assisted extraction (UAE) and microwave assisted extraction (MAE), were carried out for obtaining high yield of lemon and fennel polysaccharides (LP and FP). Actually, HPAE-PAD and TLC analyses evidenced the presence of xyslose, galactose, glucose and rhamnose monomers and galacturonic acid, typical of polysaccharides like pectin and xyloglucan chains. These findings were confirmed by NMR and FTIR spectroscopic analyses. Moreovers, gel filtration chromatography assessed the high molecular weight of recovered polysaccharides, particularly of FP waste fraction. The extracted polysaccharides were used as eco-friendly and cost-effective plasticizers of sodium alginate films (AFP and ALP). DSC analysis evidenced a significant decreasing of glass transition temperature of the polymer, tensile tests showed an enlightened rising of elongation at break and TGA analysis showed a faster degradation kinetics of AFP and ALP films, as expected in a plasticized system.


Assuntos
Citrus , Foeniculum , Plastificantes/química , Polissacarídeos/química , Verduras , Resíduos
20.
Carbohydr Polym ; 195: 631-641, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29805021

RESUMO

In this study, chitosan based microbeads containing Ungeremine, an antimicrobial alkaloid particularly active against Penicillium roqueforti, a filamentous fungus responsible of the bakery products deterioration, were prepared by external gelation by using sodium tripolyphosphate (TPP) as crosslinking agent. The stability of the beads, as well as the loading efficiency of the bioactive molecule, were assessed at different pH and TPP concentrations resulting particularly enhanced at low pH. All the microbeads evidenced antimicrobial activity against Penicillium roqueforti. The release kinetics of Ungeremine was tailored by opportunely modulating pH and TPP concentrations. Morphological analysis evidenced the improvement of the structural crosslinking density of microbeads including Ungeremine and spectroscopic analysis emphasized the active participation of Ungeremine to the crosslinking process occurring between chitosan and TPP. Finally, thermogravimetric analysis confirmed the increasing of free volume in three-dimensional networks and their liability to thermal degradation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA