Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
2.
Front Immunol ; 10: 1978, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31481965

RESUMO

The hydroalcoholic extract and ethyl acetate fraction of Punica granatum leaves have been known to exhibit anti-inflammatory activities. In this study, we investigated the therapeutic effects of galloyl-hexahydroxydiphenoyl (HHDP)-glucose isolated from pomegranate leaves on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice. Male BALB/c mice were treated with different doses of galloyl-HHDP-glucose (5, 50, and 100 mg/Kg) or dexamethasone at 5 mg/Kg (per os) 6 h after intra-tracheal instillation of LPS. Vehicle-treated mice were used as controls. Twenty-four hours after LPS challenge, bronchoalveolar lavage fluid (BALF), and lung samples were collected for analyses. They were evaluated by monitoring the expression of NF-κB, JNK, and cytokine genes and proteins, as well as cell migration and lung function. All doses of galloyl-HHDP-glucose inhibited LPS-induced JNK and NF-κB activation. Likewise, the galloyl-HHDP-glucose-treated animals presented reduced expression of the TNF-α, IL-6, and IL-1ß genes in the lungs and reduced TNF-α, IL-6, IL-1ß, and IL-8 protein levels when compared with the vehicle-treated LPS-challenged mice. In addition, the ALI mice treated with galloyl-HHDP-glucose also presented reduced lung inflammatory cell accumulation, especially that of neutrophils, in their BALF and lungs. In addition, galloyl-HHDP-glucose treatment markedly ameliorated the LPS-induced pulmonary mechanism complications and attenuated weight loss. Overall, we showed for the first time that galloyl-HHDP-glucose protects against ALI, and may be useful for treating ALI and other inflammatory disorders.


Assuntos
Lesão Pulmonar Aguda/patologia , Taninos Hidrolisáveis/farmacologia , Pulmão/efeitos dos fármacos , Extratos Vegetais/farmacologia , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/imunologia , Animais , Anti-Inflamatórios/farmacologia , Expressão Gênica/efeitos dos fármacos , Lipopolissacarídeos/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Folhas de Planta , Punica granatum
3.
Histol Histopathol ; 34(5): 537-552, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30407608

RESUMO

INTRODUCTION: Proteinase inhibitors have been associated with anti-inflammatory and antioxidant activities and may represent a potential therapeutic treatment for asthma. PURPOSE: The aim of the present study was to evaluate the effects of Enterolobium contortisiliquum trypsin inhibitor (EcTI) on pulmonary mechanical function, eosinophilic recruitment, inflammatory cytokines, remodeling and oxidative stress in an experimental model of chronic allergic pulmonary inflammation. METHODS: BALB/c mice were divided into 4 groups: C (saline i.p and inhalations with saline), OVA (ovalbumin i.p and inhalations with ovalbumin); C+EC (saline i.p, inhalations with s aline and treatment with EcTI); OVA+EC (ovalbumin i.p, inhalations with ovalbumin and treatment with EcTI). On day 29, we performed the following tests: resistance (Rrs) and elastance (Ers) of the respiratory system; (b) quantify eosinophils, 8-ISO-PGF2α, collagen and elastic fiber volume fractions; (c) IFN-γ, IL-4, IL-5, IL-13, MMP-9, TIMP-1, TGF-ß, iNOS and p65-NFκB-positive cells in the airway and alveolar walls. RESULTS: In OVA+EC group, there was an attenuation of the Rrs and Ers, reduction of eosinophils, IL-4, IL-5, IL-13, IFN-γ, iNOS and p65-NFκB-positive cells compared to OVA group. The 8-ISO-PGF2α, elastic and collagen fibers volume fractions as well as the positive cells for MMP-9, TIMP-1 and TGF-ß positive cells were decreased in OVA+EC compared to the OVA group. CONCLUSION: EcTI attenuates bronchial hyperresponsiveness, inflammation, remodeling and oxidative stress activation in this experimental mouse model of asthma.


Assuntos
Remodelação das Vias Aéreas/efeitos dos fármacos , Asma/patologia , Extratos Vegetais/farmacologia , Inibidores de Proteases/farmacologia , Animais , Modelos Animais de Doenças , Fabaceae , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Proteínas de Plantas/farmacologia , Hipersensibilidade Respiratória/patologia
4.
Front Pharmacol ; 9: 1021, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30337870

RESUMO

Introduction: T helper 17 (Th17) has been implicated in a variety of inflammatory lung and immune system diseases. However, little is known about the expression and biological role of IL-17 in acute lung injury (ALI). We investigated the mechanisms involved in the effect of anti-IL17 in a model of lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice. Methods: Mice were pre-treated with anti-IL17, 1h before saline/LPS intratracheal administration alongside non-treated controls and levels of exhaled nitric oxide (eNO), cytokine expression, extracellular matrix remodeling and oxidative stress, as well as immune cell counts in bronchoalveolar lavage fluid (BALF), and respiratory mechanics were assessed in lung tissue. Results: LPS instillation led to an increase in multiple cytokines, proteases, nuclear factor-κB, and Forkhead box P3 (FOXP3), eNO and regulators of the actomyosin cytoskeleton, the number of CD4+ and iNOS-positive cells as well as the number of neutrophils and macrophages in BALF, resistance and elastance of the respiratory system, ARG-1 gene expression, collagen fibers, and actin and 8-iso-PGF2α volume fractions. Pre-treatment with anti-IL17 led to a significant reduction in the level of all assessed factors. Conclusions: Anti-IL17 can protect the lungs from the inflammatory effects of LPS-induced ALI, primarily mediated by the reduced expression of cytokines and oxidative stress. This suggests that further studies using anti-IL17 in a treatment regime would be highly worthwhile.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA