Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Cancer Res ; 81(1): 103-113, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33158813

RESUMO

HOTAIR is a lncRNA overexpressed in several epithelial cancers and strongly correlated with invasion. This lncRNA was proven a pivotal element of the epithelial-to-mesenchymal transition (EMT), a transdifferentiation process triggering metastasis. Snail, master inducer of EMT, requires HOTAIR to recruit EZH2 on specific epithelial target genes (i.e., HNF4α, E-cadherin, and HNF1α) and cause their repression. Here, we designed a HOTAIR deletion mutant form, named HOTAIR-sbid, including the putative Snail-binding domain but depleted of the EZH2-binding domain. HOTAIR-sbid acted as a dominant negative of the endogenous HOTAIR. In both murine and human tumor cells, HOTAIR-sbid impaired the ability of HOTAIR to bind Snail and, in turn, trigger H3K27me3/EZH2-mediated repression of Snail epithelial target genes. Notably, HOTAIR-sbid expression was proven to reduce cellular motility, invasiveness, anchorage-independent growth, and responsiveness to TGFß-induced EMT. These data provide evidence on a lncRNA-based strategy to effectively impair the function of a master EMT-transcriptional factor. SIGNIFICANCE: This study defines an innovative RNA-based strategy to interfere with a pivotal function of the tumor-related lncRNA HOTAIR, comprising a dominant negative mutant that was computationally designed and that impairs epithelial-to-mesenchymal transition.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/patologia , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Hepatócitos/patologia , RNA Longo não Codificante/genética , Fatores de Transcrição da Família Snail/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Movimento Celular , Proliferação de Células , Células Cultivadas , Hepatócitos/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Camundongos , Mutação , RNA Longo não Codificante/antagonistas & inibidores , Fatores de Transcrição da Família Snail/genética
2.
PLoS One ; 14(2): e0212948, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30817779

RESUMO

RATIONALE: Treatment of multi-drug resistant Tuberculosis (MDR-TB) is challenging because it mostly relies on drugs with lower efficacy and greater toxicity than those used for drug-susceptible TB. OBJECTIVES: Aim of the study was to describe the frequency and type of adverse drug reactions in a cohort of MDR-TB patients and their potential impact on treatment outcome. METHODS: We conducted a retrospective study in a cohort of MDR-TB patients enrolled at a tertiary referral hospital in Italy from January 2008 to December 2016. The records of patients were reviewed for epidemiological, clinical, microbiological and adverse drug reactions data. RESULTS: Seventy-four MDR-TB patients (mean age 32 years, 58.1% males, 2 XDR, 12 pre-XDR TB) were extracted from the Institute data base and included in the retrospective study cohort in the evaluation period (January 2008-December 2016). Median length of treatment duration was 20 months (IQR 14-24). Treatment outcome was successful in 57 patients (77%; 51 cured, 6 treatment completed); one patient died and one failed (2.7% overall); 15 patients were lost to follow-up (20.3%). Sixty-six (89.2%) presented adverse drug reactions during the whole treatment period. Total number of adverse drug reactions registered was 409. Three hundred forty-six (84.6%) were classified as adverse events (AEs) and 63 (15.4%) were serious AEs (SAEs). One third of the total adverse drug reactions (134/409; 32.8%) was of gastrointestinal origin, followed by 47/409 (11.5%) ototoxic drug reactions, thirty-five (8.6%) regarded central nervous system and 33 (8.1%) affected the liver. All 63 SAEs required treatment suspension with 61 SAEs out of 63 (96.8%) occurring during the first six months of treatment. Factors associated with unsuccessful treatment outcome were smoking (p = 0.039), alcohol abuse (p = 0.005) and homeless condition (p = 0.044). Neither the number of antitubercular drugs used in different combinations nor the number of AEs showed significant impact on outcome. Patients who completed the treatment experienced a greater number of AEs and SAEs (p < 0.001) if compared to lost to follow-up patients. CONCLUSIONS: Our data demonstrate that, despite the high frequency of adverse drug reactions and long term therapy, the clinical management of MDR-TB patients in a referral center could reach successful treatment according to WHO target, by implementing active and systematic clinical and laboratory assessment to detect, report and manage suspected and confirmed adverse drug reactions.


Assuntos
Antituberculosos/efeitos adversos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/epidemiologia , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Adulto , Antituberculosos/uso terapêutico , Estudos de Coortes , Feminino , Humanos , Itália/epidemiologia , Masculino , Estudos Retrospectivos , Centros de Atenção Terciária , Falha de Tratamento , Resultado do Tratamento
3.
Cell Death Differ ; 26(5): 890-901, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30154449

RESUMO

The expression of the long noncoding RNA HOTAIR (HOX Transcript Antisense Intergenic RNA) is largely deregulated in epithelial cancers and positively correlates with poor prognosis and progression of hepatocellular carcinoma and gastrointestinal cancers. Furthermore, functional studies revealed a pivotal role for HOTAIR in the epithelial-to-mesenchymal transition, as this RNA is causal for the repressive activity of the master factor SNAIL on epithelial genes. Despite the proven oncogenic role of HOTAIR, its transcriptional regulation is still poorly understood. Here hepatocyte nuclear factor 4-α (HNF4α), as inducer of epithelial differentiation, was demonstrated to directly repress HOTAIR transcription in the mesenchymal-to epithelial transition. Mechanistically, HNF4α was found to cause the release of a chromatin loop on HOTAIR regulatory elements thus exerting an enhancer-blocking activity.


Assuntos
Cromatina/genética , Fator 4 Nuclear de Hepatócito/genética , RNA Longo não Codificante/genética , Fatores de Transcrição da Família Snail/genética , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Diferenciação Celular/genética , Transição Epitelial-Mesenquimal/genética , Regulação da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Camundongos
4.
Liver Int ; 38(10): 1741-1750, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29359389

RESUMO

BACKGROUND & AIMS: Hepatitis C virus (HCV) infection is known to cause major alterations in the cross-talk between hepatic and immune cells thus contributing to the liver disease pathogenesis. Extracellular vesicles have been proved to act as major players in cell-cell communication, and their cargo changes in relation to pathophysiological states. The aim of this study was to evaluate the effects of chronic HCV infection and direct-acting antivirals (DAA) on exosome-delivered microRNAs and on their ability to modulate the innate immune response. METHODS: Exosomes isolated from the plasma of healthy donors and naïve, viremic HCV patients before and after DAA treatment have been compared for their microRNAs cargo by quantitative polymerase chain reaction. Functional assays with peripheral blood cells from healthy donors were performed to assess exosome-mediated immune responses. RESULTS: MicroRNAs associated with HCV-related immunopathogenesis which were found to be enriched in exosomes of HCV viremic patients (in particular, miR-122-5p, miR-222-3p, miR-146a, miR-150-5p, miR-30c, miR-378a-3p and miR-20a-5p) were markedly reduced by DAA therapy. This exosome-microRNA cargo modulation parallels changes in their immunomodulatory properties in ex vivo experiments. Exosomes from HCV patients inhibit NK degranulation activity and this effect correlates with miR-122-5p or miR-222-3p levels. CONCLUSIONS: Enrichment of immunomodulatory microRNAs in exosomes of HCV patients was correlated with their inhibitory activity on innate immune cells function. Direct-acting antivirals (DAA) treatment was observed to revert both microRNA content and functional profiles of systemic exosomes towards those of healthy donors. Exosome-associated microRNAs may provide valuable biomarkers to monitor immune response recovery.


Assuntos
Antivirais/farmacologia , Exossomos/imunologia , Hepatite C Crônica/tratamento farmacológico , MicroRNAs/imunologia , Adulto , Idoso , Biomarcadores , Estudos de Casos e Controles , Comunicação Celular , Feminino , Perfilação da Expressão Gênica , Hepacivirus/genética , Humanos , Imunidade Inata , Masculino , Pessoa de Meia-Idade
5.
Biomed Res Int ; 2017: 2931813, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28265569

RESUMO

Exosomes are important in intercellular communication. They assure the horizontal transfer of specific functional contents (i.e., proteins, lipids, RNA molecules, and circulating DNA) from donor to recipient cells. Notably, tumor-derived exosomes (TDEs) appear to be an important vehicle of specific signals in cancer, impacting on tumor growth and metastasis. Recent researches point to the characterization of exosomes in Hepatocellular Carcinoma (HCC), the major adult liver malignancy. In this review, we summarize current findings on HCC exosomes, focusing on the identification of noncoding RNAs as exosome-enriched functional regulators and new potential biomarkers. The great potential of exosomes in future HCC diagnostic and therapeutic approaches is underlined.


Assuntos
Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/terapia , Exossomos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/terapia , Adulto , Animais , Carcinoma Hepatocelular/patologia , Humanos , Neoplasias Hepáticas/patologia
6.
Cell Rep ; 17(3): 799-808, 2016 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-27732855

RESUMO

Despite clear evidence that exosomal microRNAs (miRNAs) are able to modulate the cellular microenvironment and that exosomal RNA cargo selection is deregulated in pathological conditions, the mechanisms controlling specific RNA sorting into extracellular vesicles are still poorly understood. Here, we identified the RNA binding protein SYNCRIP (synaptotagmin-binding cytoplasmic RNA-interacting protein; also known as hnRNP-Q or NSAP1) as a component of the hepatocyte exosomal miRNA sorting machinery. SYNCRIP knockdown impairs sorting of miRNAs in exosomes. Furthermore, SYNCRIP directly binds to specific miRNAs enriched in exosomes sharing a common extra-seed sequence (hEXO motif). The hEXO motif has a role in the regulation of miRNA localization, since embedment of this motif into a poorly exported miRNA enhances its loading into exosomes. This evidence provides insights into the mechanisms of miRNA exosomal sorting process. Moreover, these findings open the way for the possible selective modification of the miRNAs exosomal cargo.


Assuntos
Exossomos/metabolismo , Hepatócitos/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , MicroRNAs/metabolismo , Transporte de RNA , Proteínas de Ligação a RNA/metabolismo , Animais , Sequência de Bases , Camundongos , Motivos de Nucleotídeos/genética , Transporte de RNA/genética
7.
J Hepatol ; 58(1): 65-72, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22960426

RESUMO

BACKGROUND & AIMS: The tumor fate derives from cell autonomous properties and niche microenvironmental cues. The transforming growth factor ß (TGFß) is a major microenvironmental factor for hepatocellular carcinoma (HCC) influencing tumor dedifferentiation, induction of epithelial-to-mesenchymal transition (EMT) and acquisition of metastatic properties. The loss of the transcriptional factor HNF4α is a predominant mechanism through which HCCs progress to a more aggressive phenotype; its re-expression, reducing tumor formation and repressing EMT program, has been suggested as a therapeutic tool for HCC gene therapy. We investigated the influence of TGFß on the anti-EMT and tumor suppressor HNF4α activity. METHODS: Cell motility and invasion were analyzed by wound healing and invasion assays. EMT was evaluated by RT-qPCR and immunofluorescence. ChIP and EMSA assays were utilized for investigation of the HNF4α DNA binding activity. HNF4α post-translational modifications (PTMs) were assessed by 2-DE analysis. GSK3ß activity was modulated by chemical inhibition and constitutive active mutant expression. RESULTS: We demonstrated that the presence of TGFß impairs the efficiency of HNF4α as tumor suppressor. We found that TGFß induces HNF4α PTMs that correlate with the early loss of HNF4α DNA binding activity on target gene promoters. Furthermore, we identified the GSK3ß kinase as one of the TGFß targets mediating HNF4α functional inactivation: GSK3ß chemical inhibition results in HNF4α DNA binding impairment while a constitutively active GSK3ß mutant impairs the TGFß-induced inhibitory effect on HNF4α tumor suppressor activity. CONCLUSIONS: Our data identify in the dominance of TGFß a limit for the HNF4α-mediated gene therapy of HCC.


Assuntos
Carcinoma Hepatocelular , Terapia Genética , Quinase 3 da Glicogênio Sintase/metabolismo , Fator 4 Nuclear de Hepatócito/metabolismo , Neoplasias Hepáticas , Fator de Crescimento Transformador beta/metabolismo , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/secundário , Carcinoma Hepatocelular/terapia , Linhagem Celular Transformada , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Transição Epitelial-Mesenquimal/genética , Transição Epitelial-Mesenquimal/fisiologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Genes Supressores de Tumor/fisiologia , Glicogênio Sintase Quinase 3 beta , Células Hep G2 , Fator 4 Nuclear de Hepatócito/genética , Hepatócitos/citologia , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/terapia , Camundongos , Fator de Crescimento Transformador beta/genética , Microambiente Tumoral/genética , Microambiente Tumoral/fisiologia
8.
J Proteome Res ; 11(5): 2786-97, 2012 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-22443280

RESUMO

Hepatic fat export occurs by apolipoprotein B-100-containing lipoprotein production, whereas impaired production leads to liver steatosis. Hepatitis C virus (HCV) infection is associated to dysregulation of apoB-100 secretion and steatosis; however, the molecular mechanism by which HCV affects the apoB-100 secretion is not understood. Here, combining quantitative proteomics and computational biology, we propose ferritin heavy chain (Fth) as being the cellular determinant of apoB-100 production inhibition. By means of molecular analyses, we found that HCV nonstructural proteins and NS5A appear to be sufficient for inducing Fth up-regulation. Fth in turn was found to inhibit apoB-100 secretion leading to increased intracellular degradation via proteasome. Notably, intracellular Fth down-regulation by siRNA restores apoB-100 secretion. The inverse correlation between ferritin and plasma apoB-100 concentrations was also found in JFH-1 HCV cell culture systems (HCVcc) and HCV-infected patients. Finally, Fth expression was found to be required for robust HCV infection. These observations provide a further molecular explanation for the onset of liver steatosis and allow for hypothesizing on new therapeutic and antiviral strategies.


Assuntos
Apoferritinas/metabolismo , Apolipoproteína B-100/antagonistas & inibidores , Regulação Viral da Expressão Gênica , Hepacivirus/patogenicidade , Apolipoproteína B-100/sangue , Linhagem Celular Tumoral , Biologia Computacional , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Fígado Gorduroso/virologia , Hepacivirus/genética , Hepacivirus/metabolismo , Hepatite C/patologia , Hepatite C/virologia , Hepatócitos/metabolismo , Hepatócitos/patologia , Hepatócitos/virologia , Interações Hospedeiro-Patógeno , Humanos , Marcação por Isótopo , Complexo de Endopeptidases do Proteassoma/metabolismo , Mapas de Interação de Proteínas , Proteólise , Proteômica/métodos , Transfecção , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
9.
Hepatology ; 53(6): 2063-74, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21384409

RESUMO

UNLABELLED: The concept that cellular terminal differentiation is stably maintained once development is complete has been questioned by numerous observations showing that differentiated epithelium may undergo an epithelial-to-mesenchymal transition (EMT) program. EMT and the reverse process, mesenchymal-to-epithelial transition (MET), are typical events of development, tissue repair, and tumor progression. In this study, we aimed to clarify the molecular mechanisms underlying these phenotypic conversions in hepatocytes. Hepatocyte nuclear factor 4α (HNF4α) was overexpressed in different hepatocyte cell lines and the resulting gene expression profile was determined by real-time quantitative polymerase chain reaction. HNF4α recruitment on promoters of both mesenchymal and EMT regulator genes was determined by way of electrophoretic mobility shift assay and chromatin immunoprecipitation. The effect of HNF4α depletion was assessed in silenced cells and in the context of the whole liver of HNF4 knockout animals. Our results identified key EMT regulators and mesenchymal genes as new targets of HNF4α. HNF4α, in cooperation with its target HNF1α, directly inhibits transcription of the EMT master regulatory genes Snail, Slug, and HMGA2 and of several mesenchymal markers. HNF4α-mediated repression of EMT genes induces MET in hepatomas, and its silencing triggers the mesenchymal program in differentiated hepatocytes both in cell culture and in the whole liver. CONCLUSION: The pivotal role of HNF4α in the induction and maintenance of hepatocyte differentiation should also be ascribed to its capacity to continuously repress the mesenchymal program; thus, both HNF4α activator and repressor functions are necessary for the identity of hepatocytes.


Assuntos
Diferenciação Celular/fisiologia , Células Epiteliais/patologia , Fator 4 Nuclear de Hepatócito/fisiologia , Hepatócitos/patologia , Mesoderma/patologia , Animais , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Fator 1-alfa Nuclear de Hepatócito/fisiologia , Fator 4 Nuclear de Hepatócito/genética , Humanos , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Knockout , Modelos Animais , Fenótipo , Fatores de Transcrição da Família Snail , Fatores de Transcrição/fisiologia
10.
Gut ; 60(3): 378-86, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20940285

RESUMO

BACKGROUND/AIMS: The life cycle of hepatitis C virus (HCV) is intimately linked to the lipid metabolism of the host. In particular, HCV exploits the metabolic machinery of the lipoproteins in several steps of its life cycle such as circulation in the bloodstream, cell attachment and entry, assembly and release of viral particles. However, the details of how HCV interacts with and influences the metabolism of the host lipoproteins are not well understood. A study was undertaken to investigate whether HCV directly affects the protein composition of host circulating lipoproteins. METHODS: A proteomic analysis of circulating very low-, low- and high-density lipoproteins (VLDL, LDL and HDL), isolated from either in-treatment naïve HCV-infected patients or healthy donors (HD), was performed using two-dimensional gel electrophoresis and tandem mass spectrometry (MALDI-TOF/TOF). The results obtained were further investigated using in vitro models of HCV infection and replication. RESULTS: A decreased level of apolipoprotein A-I (apoA-I) was found in the LDL fractions of HCV-infected patients. This result was confirmed by western blot and ELISA analysis. HCV cellular models (JFH1 HCV cell culture system (HCVcc) and HCV subgenomic replicons) showed that the decreased apoA-I/LDL association originates from hepatic biogenesis rather than lipoprotein catabolism occurring in the circulation, and is not due to a downregulation of the apoA-I protein concentration. The sole non-structural viral proteins were sufficient to impair the apoA-I/LDL association. Functional evidence was obtained for involvement of apoA-I in the viral life cycle such as RNA replication and virion production. The specific siRNA-mediated downregulation of apoA-I led to a reduction in both HCV RNA and viral particle levels in culture. CONCLUSIONS: This study shows that HCV induces lipoprotein structural modification and that its replication and production are linked to the host lipoprotein metabolism, suggesting apoA-I as a new possible target for antiviral therapy.


Assuntos
Apolipoproteína A-I/sangue , Hepacivirus/fisiologia , Hepatite C/sangue , Lipoproteínas LDL/sangue , Adulto , Estudos de Casos e Controles , Células Cultivadas , Regulação para Baixo/fisiologia , Eletroforese em Gel Bidimensional/métodos , Feminino , Hepatite C/virologia , Humanos , Masculino , Pessoa de Meia-Idade , Proteômica , Vírion/fisiologia , Replicação Viral/fisiologia
11.
Gastroenterology ; 137(2): 660-72, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19454287

RESUMO

BACKGROUND & AIMS: In each hepatocyte, the specific repertoire of gene expression is influenced by its exact location along the portocentrovenular axis of the hepatic lobule and provides a reason for the liver functions compartmentalization defined "metabolic zonation." So far, few molecular players controlling genetic programs of periportal (PP) and perivenular (PV) hepatocytes have been identified; the elucidation of zonation mechanisms remains a challenge for experimental hepatology. Recently, a key role in induction and maintenance of the hepatocyte heterogeneity has been ascribed to Wnt/beta-catenin pathway. We sought to clarify how this wide-ranging stimulus integrates with hepatocyte specificity. METHODS: Reverse transcriptase polymerase chain reaction (RT-PCR) allowed the transcriptional profiling of hepatocytes derived from in vitro differentiation of liver stem cells. The GSK3beta inhibitor 6-bromoindirubin-3'-oxime (BIO) was used for beta-catenin stabilization. Co-immunoprecipitations were used to study biochemical protein interactions while ChIP assays allowed the in vivo inspection of PV and PP genes regulatory regions. RESULTS: We found that spontaneous differentiation of liver stem cells gives rise to PP hepatocytes that, after Wnt pathway activation, switch into PV hepatocytes. Next, we showed that the Wnt downstream player LEF1 interacts with the liver-enriched transcriptional factor HNF4alpha. Finally, we unveiled that the BIO induced activation of PV genes correlates with LEF1 binding to both its own and HNF4alpha consensus, and the repression of PP genes correlates with HNF4alpha displacement from its own consensus. CONCLUSION: Our data show a direct and hitherto unknown convergence of the canonical Wnt signaling on the HNF4alpha-driven transcription providing evidences of a mechanism controlling liver zonated gene expression.


Assuntos
Diferenciação Celular/genética , Fator 4 Nuclear de Hepatócito/metabolismo , Hepatócitos/citologia , Transdução de Sinais/genética , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Animais , Western Blotting , Proliferação de Células , Células Cultivadas , Imunofluorescência , Fator 4 Nuclear de Hepatócito/genética , Hepatócitos/fisiologia , Humanos , Imunoprecipitação , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sensibilidade e Especificidade , Transdução de Sinais/fisiologia , Transfecção , Proteínas Wnt/genética , beta Catenina/genética
12.
FASEB J ; 21(11): 2849-62, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17463226

RESUMO

The ErbB-4 receptors are unique in the EGFR/ErbB family for the ability to associate with WW domain-containing proteins. To identify new ligands of the cytoplasmic tail of ErbB-4, we panned a brain cDNA phage library with ErbB-4 peptides containing sequence motifs corresponding to putative docking sites for class-I WW domains. This approach led to identification of AIP4/Itch, a member of the Nedd4-like family of E3 ubiquitin protein ligases, as a protein that specifically interacts with and ubiquitinates ErbB-4 in vivo. Interaction with the ErbB-4 receptors occurs via the WW domains of AIP4/Itch. Functional analyses demonstrate that AIP4/Itch is recruited to the ErbB-4 receptor to promote its polyubiquitination and degradation, thereby regulating stability of the receptor and access of receptor intracellular domains to the nuclear compartment. These findings expand our understanding of the mechanisms contributing to the integrity of the ErbB signaling network and mechanistically link the cellular ubiquitination pathway of AIP4/Itch to the ErbB-4 receptor.


Assuntos
Receptores ErbB/metabolismo , Proteínas Repressoras/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Western Blotting , Encéfalo/metabolismo , Endossomos , Imunofluorescência , Biblioteca Gênica , Células HeLa , Humanos , Imunoprecipitação , Rim/metabolismo , Biblioteca de Peptídeos , Mapeamento de Interação de Proteínas , Transporte Proteico , Receptor ErbB-4 , Frações Subcelulares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA