Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cell Chem Biol ; 31(2): 249-264.e7, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37944523

RESUMO

Iron overload, characterized by accumulation of iron in tissues, induces a multiorgan toxicity whose mechanisms are not fully understood. Using cultured cell lines, Caenorhabditis elegans, and mice, we found that ferroptosis occurs in the context of iron-overload-mediated damage. Exogenous oleic acid protected against iron-overload-toxicity in cell culture and Caenorhabditis elegans by suppressing ferroptosis. In mice, oleic acid protected against FAC-induced liver lipid peroxidation and damage. Oleic acid changed the cellular lipid composition, characterized by decreased levels of polyunsaturated fatty acyl phospholipids and decreased levels of ether-linked phospholipids. The protective effect of oleic acid in cells was attenuated by GW6471 (PPAR-α antagonist), as well as in Caenorhabditis elegans lacking the nuclear hormone receptor NHR-49 (a PPAR-α functional homologue). These results highlight ferroptosis as a driver of iron-overload-mediated damage, which is inhibited by oleic acid. This monounsaturated fatty acid represents a potential therapeutic approach to mitigating organ damage in iron overload individuals.


Assuntos
Ferroptose , Sobrecarga de Ferro , Animais , Camundongos , Caenorhabditis elegans , Ácido Oleico/farmacologia , Receptores Ativados por Proliferador de Peroxissomo , Sobrecarga de Ferro/tratamento farmacológico , Ferro , Éteres Fosfolipídicos
2.
Acta Neurobiol Exp (Wars) ; 83(2): 171-178, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37493533

RESUMO

Neurodegeneration is characterized by loss of neurons causing changes that lead individuals to debilitating conditions; the most common of this condition is the Alzheimer's disease. It has been related that enriched environment (EE) induces experience­dependent plasticity mechanisms, improving the performance of the animals in learning and memory tests. This study evaluated the effects of EE on histological parameters of the cerebellum in rats that received intracerebroventricular streptozotocin. In the standard environment, streptozotocin (STZ) promoted a significant increase between the gaps in the Purkinje layer of approximately 20%. On the other hand, in an enriched environment, the control result (EE) was similar to the result under streptozotocin effect (STZEE). In the standard environment (SE) group a 26% significant reduction in Purkinje cell density was observed under STZ presence. By analyzing the results of the density of Purkinje cells under the effect of streptozotocin in a standard environment (STZSE) against the density of the layer of Purkinje cells also under the effect of streptozotocin in an enriched environment (STZEE), a significant reduction of approximately 76% in density was observed of Purkinje cells in standard environment (STZSE), the mean number of Purkinje cells in enriched environments was not reduced, despite of STZ. According to the results, treatment with STZ and exposure to EE did not change the cerebellum general morphology/cytoarchitecture, hence was no significant difference in the layers thickness. These facts demonstrate that the enriched environment appears to protect the Purkinje cells layer of cerebellum from possible degeneration.


Assuntos
Doença de Alzheimer , Células de Purkinje , Ratos , Animais , Estreptozocina/toxicidade , Cerebelo , Doença de Alzheimer/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA