Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Comput Methods Biomech Biomed Engin ; 23(8): 422-431, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32116045

RESUMO

Finite element (FE) simulation plays a major role in computing stress and predicting the failure of biomedical components. Normally in past, researchers focused on developing a global computational model from the scanned data of patients to analyze the stresses and deformations. To compute the wear of the hip prosthesis, mostly the global model (GM) is used to predict the expected life for million cycles using nodal updating technique which leads to high computational effort and time. The proposed work utilizes a submodeling finite element technique to analyze the contact pressure and wear of biomaterials for three different combinations in hip prosthesis including metal, ceramic and polycrystalline diamond materials. Initially the global model boundary and loading conditions are transferred to the submodel. The mesh is refined further using finer mesh and then the results are computed which consumes lesser time. The contact stress as well as the linear wear of biomaterials is found to be quite high for the local model (LM) when compared with the global model. However, no changes in volumetric wear of these biomaterials are observed when compared with previous experimental results. The computational time as well as accuracy in estimating the contact stress and the wear of bearings is improved effectively. Among local model with different element sizes, 0.75 mm element size of local model showed improved results in estimating the contact stress and linear wear of bearing.


Assuntos
Análise de Elementos Finitos , Prótese de Quadril , Pressão , Desenho de Prótese , Falha de Prótese , Humanos , Teste de Materiais/métodos , Modelos Teóricos , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA