Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Adv Healthc Mater ; : e2304618, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700450

RESUMO

The tumor uptake of large non-targeted nanocarriers primarily occurs through passive extravasation, known as the enhanced permeability and retention (EPR) effect. Prior studies demonstrated improved tumor uptake and retention of 4-arm 40 kDa star polyethylene glycol (StarPEG) polymers for cancer imaging by adding prostate-specific membrane antigen (PSMA) targeting small molecule ligands. To test PSMA-targeted delivery and therapeutic efficacy, StarPEG nanodrugs with/without three copies of PSMA-targeting ligands, ACUPA, are designed and synthesized. For single-photon emission computed tomography (SPECT) imaging and therapy, each nanocarrier is labeled with 177Lu using DOTA radiometal chelator. The radiolabeled nanodrugs, [177Lu]PEG-(DOTA)1 and [177Lu]PEG-(DOTA)1(ACUPA)3, are evaluated in vitro and in vivo using PSMA+ PC3-Pip and/or PSMA- PC3-Flu cell lines, subcutaneous xenografts and disseminated metastatic models. The nanocarriers are efficiently radiolabeled with 177Lu with molar activities 10.8-15.8 MBq/nmol. Besides excellent in vitro PSMA binding affinity (kD = 51.7 nM), the targeted nanocarrier, [177Lu]PEG-(DOTA)1(ACUPA)3, demonstrated excellent in vivo SPECT imaging contrast with 21.3% ID/g PC3-Pip tumors uptake at 192 h. Single doses of 18.5 MBq [177Lu]PEG-(DOTA)1(ACUPA)3 showed complete resolution of the PC3-Pip xenografts observed up to 138 days. Along with PSMA-targeted excellent imaging contrast, these results demonstrated high treatment efficacy of [177Lu]PEG-(DOTA)1(ACUPA)3 for prostate cancer, with potential for clinical translation.

2.
Bioconjug Chem ; 35(4): 551-558, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38591781

RESUMO

Poly(ADP-ribose) polymerase inhibitors (PARPi) have been approved for once or twice daily oral use in the treatment of cancers with BRCA defects. However, for some patients, oral administration of PARPi may be impractical or intolerable, and a long-acting injectable formulation is desirable. We recently developed a long-acting PEGylated PARPi prodrug, PEG∼talazoparib (TLZ), which suppressed the growth of PARPi-sensitive tumors in mice for very long periods. However, the release rate of TLZ from the conjugate was too fast to be optimal in humans. We prepared several new PEG∼TLZ prodrugs having longer half-lives of drug release and accurately measured their pharmacokinetics in the rat. Using the rates of release of TLZ from these prodrugs and the known pharmacokinetics of free TLZ in humans, we simulated the pharmacokinetics of the macromolecular prodrugs and released TLZ in humans. From several possibilities, we chose two conjugates that could be administered intravenously every 2 weeks and maintain TLZ within its known therapeutic window. We describe situations where the PEG∼TLZ conjugates would find utility in humans and suggest how the intravenously administered long-acting prodrugs could in fact be more effective than daily oral administration of free TLZ.


Assuntos
Antineoplásicos , Neoplasias , Pró-Fármacos , Humanos , Camundongos , Ratos , Animais , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Pró-Fármacos/farmacologia , Neoplasias/tratamento farmacológico
3.
BioDrugs ; 38(2): 171-176, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38236523

RESUMO

We previously proposed that sacituzumab govitecan (SG, Trodelvy®) likely acts as a simple prodrug of systemic SN-38 as well as an antibody drug conjugate (ADC). In the present commentary, we assess whether a long-acting SN-38 prodrug, such as PLX038, might be efficacious in SG-resistant patients. We first describe possible mechanisms of action of SG, with new insights on pharmacokinetics and TROP2 receptor occupancy. We argue that SG is not an optimal conventional ADC and that the amount of systemic SN-38 spontaneously hydrolyzed from the ADC is so high it must have activity. Then, we describe the concept of time-over-target as related to the pharmacology of SG and PLX038 as SN-38 prodrugs. To be clear, we are not in any way suggesting that PLX038 or any SN-38 prodrug is superior to SG as an anticancer agent. Clearly, SG has the benefit over antigen-independent SN-38 prodrugs in that it targets cells with the TROP2 receptor. However, we surmise that PLX038 should be a more efficacious and less toxic prodrug of systemic SN-38 than SG. Finally, we suggest possible mechanisms of SG resistance and how PLX038 might perform in the context of each. Taken together, we argue that-contrary to many opinions-SG does not exclusively act as a conventional ADC, and propose that PLX038 may be efficacious in some settings of SG-resistance.


Assuntos
Anticorpos Monoclonais Humanizados , Camptotecina/análogos & derivados , Imunoconjugados , Neoplasias , Pró-Fármacos , Humanos , Irinotecano/farmacologia , Irinotecano/uso terapêutico , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Antígenos de Neoplasias , Neoplasias/tratamento farmacológico , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico
4.
Cancer Res Commun ; 3(5): 908-916, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37377899

RESUMO

Exatecan (Exa) is a very potent inhibitor of topoisomerase I and anticancer agent. It has been intensively studied as a single agent, a large macromolecular conjugate and as the payload component of antigen-dependent antibody-drug conjugates. The current work describes an antigen-independent conjugate of Exa with polyethylene glycol (PEG) that slowly releases free Exa. Exa was conjugated to a 4-arm 40 kDa PEG through a ß-eliminative cleavable linker. Pharmacokinetic studies in mice showed that the conjugate has an apparent circulating half-life of 12 hours, which reflects a composite of both the rate of renal elimination (half-life ∼18 hours) and release of Exa (half-life ∼40 hours). Remarkably, a single low dose of 10 µmol/kg PEG-Exa-only approximately 0.2 µmol/mouse-caused complete suppression of tumor growth of BRCA1-deficient MX-1 xenografts lasting over 40 days. A single low dose of 2.5 µmol/kg PEG-Exa administered with low but efficacious doses of the PARP inhibitor talazoparib showed strong synergy and caused significant tumor regression. Furthermore, the same low, single dose of PEG-Exa administered with the ATR inhibitor VX970 at doses of the DNA damage response inhibitor that do not affect tumor growth show high tumor regression, strong synergy, and synthetic lethality. Significance: A circulating conjugate that slowly releases Exa is described. It is efficacious after a single dose and synergistic with ATR and PARP inhibitors.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Animais , Camundongos , Camptotecina/farmacologia , Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Polietilenoglicóis/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Dano ao DNA
5.
ACS Appl Mater Interfaces ; 14(45): 50569-50582, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36318757

RESUMO

Tumoral uptake of large-size nanoparticles is mediated by the enhanced permeability and retention (EPR) effect, with variable accumulation and heterogenous tumor tissue penetration depending on the tumor phenotype. The performance of nanocarriers via specific targeting has the potential to improve imaging contrast and therapeutic efficacy in vivo with increased deep tissue penetration. To address this hypothesis, we designed and synthesized prostate cancer-targeting starPEG nanocarriers (40 kDa, 15 nm), [89Zr]PEG-(DFB)3(ACUPA)1 and [89Zr]PEG-(DFB)1(ACUPA)3, with one or three prostate-specific membrane antigen (PSMA)-targeting ACUPA ligands. The in vitro PSMA binding affinity and in vivo pharmacokinetics of the targeted nanocarriers were compared with a nontargeted starPEG, [89Zr]PEG-(DFB)4, in PSMA+ PC3-Pip and PSMA- PC3-Flu cells, and xenografts. Increasing the number of ACUPA ligands improved the in vitro binding affinity of PEG-derived polymers to PC3-Pip cells. While both PSMA-targeted nanocarriers significantly improved tissue penetration in PC3-Pip tumors, the multivalent [89Zr]PEG-(DFB)1(ACUPA)3 showed a remarkably higher PC3-Pip/blood ratio and background clearance. In contrast, the nontargeted [89Zr]PEG-(DFB)4 showed low EPR-mediated accumulation with poor tumor tissue penetration. Overall, ACUPA conjugated targeted starPEGs significantly improve tumor retention with deep tumor tissue penetration in low EPR PC3-Pip xenografts. These data suggest that PSMA targeting with multivalent ACUPA ligands may be a generally applicable strategy to increase nanocarrier delivery to prostate cancer. These targeted multivalent nanocarriers with high tumor binding and low healthy tissue retention could be employed in imaging and therapeutic applications.


Assuntos
Antígenos de Superfície , Polímeros , Neoplasias da Próstata , Humanos , Masculino , Antígenos de Superfície/metabolismo , Linhagem Celular Tumoral , Glutamato Carboxipeptidase II/metabolismo , Ligantes , Polímeros/uso terapêutico , Próstata/patologia , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo
6.
Mol Cancer Ther ; 21(11): 1722-1728, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-35999657

RESUMO

Alterations in the ATM gene are among the most common somatic and hereditary cancer mutations, and ATM-deficient tumors are hypersensitive to DNA-damaging agents. A synthetic lethal combination of DNA-damaging agents and DNA repair inhibitors could have widespread utility in ATM-deficient cancers. However, overlapping normal tissue toxicities from these drug classes have precluded their clinical translation. We investigated PLX038, a releasable polyethylene glycol-conjugate of the topoisomerase I inhibitor SN-38, in ATM wild-type and null isogenic xenografts and in a BRCA1-deficient xenograft. PLX038 monotherapy and combination with PARP inhibition potently inhibited the growth of both BRCA1- and ATM-deficient tumors. A patient with an ATM-mutated breast cancer treated with PLX038 and the PARP inhibitor rucaparib achieved rapid, symptomatic, and radiographic complete response lasting 12 months. Single-agent PLX038 or PLX038 in combination with DNA damage response inhibitors are novel therapeutic paradigms for patients with ATM-loss cancers.


Assuntos
Inibidores de Poli(ADP-Ribose) Polimerases , Inibidores da Topoisomerase I , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Inibidores da Topoisomerase I/farmacologia , Inibidores da Topoisomerase I/uso terapêutico , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Linhagem Celular Tumoral , Reparo do DNA
7.
Proc Natl Acad Sci U S A ; 119(30): e2201067119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35858423

RESUMO

The C-natriuretic peptide (CNP) analog vosoritide has recently been approved for treatment of achondroplasia in children. However, the regimen requires daily subcutaneous injections in pediatric patients over multiple years. The present work sought to develop a long-acting CNP that would provide efficacy equal to or greater than that of vosoritide but require less frequent injections. We used a technology for half-life extension, whereby a drug is attached to tetra-polyethylene glycol hydrogels (tetra-PEG) by ß-eliminative linkers that cleave at predetermined rates. These hydrogels-fabricated as uniform ∼60-µm microspheres-are injected subcutaneously, where they serve as a stationary depot to slowly release the drug into the systemic circulation. We prepared a highly active, stable CNP analog-[Gln6,14]CNP-38-composed of the 38 C-terminal amino acids of human CNP-53 containing Asn to Gln substitutions to preclude degradative deamidation. Two microsphere [Gln6,14]CNP-38 conjugates were prepared, with release rates designed to allow once-weekly and once-monthly administration. After subcutaneous injection of the conjugates in mice, [Gln6,14]CNP-38 was slowly released into the systemic circulation and showed biphasic elimination pharmacokinetics with terminal half-lives of ∼200 and ∼600 h. Both preparations increased growth of mice comparable to or exceeding that produced by daily vosoritide. Simulations of the pharmacokinetics in humans indicated that plasma [Gln6,14]CNP-38 levels should be maintained within a therapeutic window over weekly, biweekly, and likely, monthly dosing intervals. Compared with vosoritide, which requires ∼30 injections per month, microsphere [Gln6,14]CNP-38 conjugates-especially the biweekly and monthly dosing-could provide an alternative that would be well accepted by physicians, patients, and patient caregivers.


Assuntos
Acondroplasia , Desenvolvimento de Medicamentos , Peptídeo Natriurético Tipo C , Acondroplasia/tratamento farmacológico , Animais , Criança , Preparações de Ação Retardada , Humanos , Hidrogéis/química , Injeções Subcutâneas , Camundongos , Microesferas , Peptídeo Natriurético Tipo C/administração & dosagem , Peptídeo Natriurético Tipo C/análogos & derivados , Peptídeo Natriurético Tipo C/síntese química , Peptídeo Natriurético Tipo C/farmacocinética
8.
J Immunother Cancer ; 10(1)2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35101947

RESUMO

BACKGROUND: Interleukin-15 (IL-15) is an important cytokine necessary for proliferation and maintenance of natural killer (NK) and CD8+ T cells, and with great promise as an immuno-oncology therapeutic. However, IL-15 has a very short half-life and a single administration does not provide the sustained exposure required for optimal stimulation of target immune cells. The purpose of this work was to develop a very long-acting prodrug that would maintain IL-15 within a narrow therapeutic window for long periods-similar to a continuous infusion. METHODS: We prepared and characterized hydrogel microspheres (MS) covalently attached to IL-15 (MS~IL-15) by a releasable linker. The pharmacokinetics and pharmacodynamics of MS~IL-15 were determined in C57BL/6J mice. The antitumor activity of MS~IL-15 as a single agent, and in combination with a suitable therapeutic antibody, was tested in a CD8+ T cell-driven bilateral transgenic adenocarcinoma mouse prostate (TRAMP)-C2 model of prostatic cancer and a NK cell-driven mouse xenograft model of human ATL (MET-1) murine model of adult T-cell leukemia. RESULTS: On subcutaneous administration to mice, the cytokine released from the depot maintained a long half-life of about 168 hours over the first 5 days, followed by an abrupt decrease to about ~30 hours in accordance with the development of a cytokine sink. A single injection of MS~IL-15 caused remarkably prolonged expansions of NK and ɣδ T cells for 2 weeks, and CD44hiCD8+ T cells for 4 weeks. In the NK cell-driven MET-1 murine model of adult T-cell leukemia, single-agent MS~IL-1550 µg or anti-CCR4 provided modest increases in survival, but a combination-through antibody-depedent cellular cytotoxicity (ADCC)-significantly extended survival. In a CD8+ T cell-driven bilateral TRAMP-C2 model of prostatic cancer, single agent subcutaneous MS~IL-15 or unilateral intratumoral agonistic anti-CD40 showed modest growth inhibition, but the combination exhibited potent, prolonged bilateral antitumor activity. CONCLUSIONS: Our results show MS~IL-15 provides a very long-acting IL-15 with low Cmax that elicits prolonged expansion of target immune cells and high anticancer activity, especially when administered in combination with a suitable immuno-oncology agent.


Assuntos
Adenocarcinoma/tratamento farmacológico , Antineoplásicos Imunológicos/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Interleucina-15/administração & dosagem , Leucemia de Células T/tratamento farmacológico , Pró-Fármacos/administração & dosagem , Neoplasias da Próstata/tratamento farmacológico , Animais , Antígenos CD40/antagonistas & inibidores , Linhagem Celular Tumoral , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos , Meia-Vida , Humanos , Imunoterapia , Interleucina-15/farmacocinética , Masculino , Camundongos Endogâmicos C57BL , Microesferas , Pró-Fármacos/farmacocinética , Receptores CCR4/antagonistas & inibidores
10.
Bioconjug Chem ; 32(4): 794-800, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33822591

RESUMO

ß-Elimination of drugs tethered to macromolecular carbamates provides a platform for drug half-life extension. However, the macromolecular Michael acceptor products formed upon drug release can potentially react with biological amines and thiols and may raise concerns about safety. We desired to mitigate this possibility by developing linkers that have predictable rates of ß-elimination but suppressed rates of nucleophilic addition to their Michael acceptor products. We prepared Michael acceptor products of ß-eliminative linkers that contained a methyl group at the Cß carbon or a gem-dimethyl group at the Cγ carbon and studied the kinetics of their reactions with the most prevalent biological nucleophiles-amine and thiol groups. Aza-Michael reactions with glycine are slowed about 20-fold by methylation of the ß-carbon and 175-fold with a gem-dimethyl group at the γ-carbon. Likewise, addition of the glutathione thiol to γ-gem-dimethyl Michael acceptors was retarded 7-24-fold compared to parent unsubstituted linkers. It was estimated that in an in vivo environment of ∼0.5 mM macromolecular thiols or ∼20 mM macromolecular amines-as in plasma-the reaction half-life of a typical Michael acceptor with a γ-gem-dimethyl linker could exceed 3 years for thiols or 25 years for amines. We also prepared a large series of γ-gem-dimethyl ß-eliminative linkers and showed excellent structure-activity relationships of elimination rates with corresponding unsubstituted parent linkers. Finally, we compared the first-generation unsubstituted and new gem-dimethyl ß-eliminative linkers in a once-monthly drug delivery system of a 39 amino acid peptide. Both linkers provided the desired half-life extension of the peptide, but the Michael acceptor formed from the gem-dimethyl linker was much less reactive. We conclude that the γ-gem-dimethyl ß-eliminative linkers provide high flexibility and greatly reduce potential reactions of Michael acceptor products with biologically important nucleophiles.


Assuntos
Preparações Farmacêuticas/química , Carbamatos/química , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Meia-Vida , Cinética , Relação Estrutura-Atividade
11.
Cancer Res ; 81(4): 1076-1086, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33323380

RESUMO

PARP inhibitors are approved for treatment of cancers with BRCA1 or BRCA2 defects. In this study, we prepared and characterized a very long-acting PARP inhibitor. Synthesis of a macromolecular prodrug of talazoparib (TLZ) was achieved by covalent conjugation to a PEG40kDa carrier via a ß-eliminative releasable linker. A single injection of the PEG∼TLZ conjugate was as effective as ∼30 daily oral doses of TLZ in growth suppression of homologous recombination-defective tumors in mouse xenografts. These included the KT-10 Wilms' tumor with a PALB2 mutation, the BRCA1-deficient MX-1 triple-negative breast cancer, and the BRCA2-deficient DLD-1 colon cancer; the prodrug did not inhibit an isogenic DLD-1 tumor with wild-type BRCA2. Although the half-life of PEG∼TLZ and released TLZ in the mouse was only ∼1 day, the exposure of released TLZ from a single safe, effective dose of the prodrug exceeded that of oral TLZ given daily over one month. µPET/CT imaging showed high uptake and prolonged retention of an 89Zr-labeled surrogate of PEG∼TLZ in the MX-1 BRCA1-deficient tumor. These data suggest that the long-lasting antitumor effect of the prodrug is due to a combination of its long t 1/2, the high exposure of TLZ released from the prodrug, increased tumor sensitivity upon continued exposure, and tumor accumulation. Using pharmacokinetic parameters of TLZ in humans, we designed a long-acting PEG∼TLZ for humans that may be superior in efficacy to daily oral TLZ and would be useful for treatment of PARP inhibitor-sensitive cancers in which oral medications are not tolerated. SIGNIFICANCE: These findings demonstrate that a single injection of a long-acting prodrug of the PARP inhibitor talazoparib in murine xenografts provides tumor suppression equivalent to a month of daily dosing of talazoparib.


Assuntos
Distúrbios no Reparo do DNA/patologia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Ftalazinas/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Animais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/genética , Distúrbios no Reparo do DNA/tratamento farmacológico , Distúrbios no Reparo do DNA/genética , Preparações de Ação Retardada/uso terapêutico , Feminino , Genes BRCA2 , Genes do Tumor de Wilms , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Nus , Camundongos SCID , Neoplasias/genética , Ftalazinas/química , Polietilenoglicóis/química , Polietilenoglicóis/uso terapêutico , Pró-Fármacos/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto , Zircônio/química , Zircônio/uso terapêutico
12.
Front Immunol ; 11: 1813, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32903632

RESUMO

Interleukin-15 (IL-15) is crucial for the proliferation and survival of NK and CD8+ T memory cells, and of significant interest in immuno-oncology. Immune cell expansion requires continuous IL-15 exposure above a threshold concentration for an extended period. However, the short t1/2 of IL-15 makes this impossible to achieve after a single injection without a high Cmax and toxicities. The most effective way to deliver IL-15 is continuous intra-venous infusion, but this administration mode is impractical. Efforts have been devoted to developing IL-15 agonists which after a single injection maintain the cytokine in a narrow therapeutic window for a long period. Enigmatically, although the half-life extension technologies used often extend the half-life of a protein to 1 or more weeks, the modified IL-15 agonists studied usually have systemic elimination half-lives of only a few hours and rarely much longer than 1 day. These short half-lives-common to all circulating IL-15 agonists thus far reported-can be explained by a dynamic increase in clearance of the agonists that accompanies target immune cell proliferation. What is needed is an IL-15 agonist that is as effective as continuous intravenous infusion, but with the convenience and acceptance of single injections at 1-week or longer intervals.


Assuntos
Fatores Imunológicos/farmacocinética , Interleucina-15/agonistas , Interleucina-15/farmacocinética , Animais , Meia-Vida , Humanos , Estabilidade Proteica , Receptores de Interleucina-15/agonistas
13.
Cancer Chemother Pharmacol ; 85(2): 251-263, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31927611

RESUMO

PURPOSE: Defining robust criteria for drug activity in preclinical studies allows for fewer animals per treatment group, and potentially allows for inclusion of additional cancer models that more accurately represent genetic diversity and, potentially, allows for tumor sensitivity biomarker identification. METHODS: Using a single-mouse design, 32 pediatric xenograft tumor models representing diverse pediatric cancer types [Ewing sarcoma (9), brain (4), rhabdomyosarcoma (10), Wilms tumor (4), and non-CNS rhabdoid tumors (5)] were evaluated for response to a single administration of pegylated-SN38 (PLX038A), a controlled-release PEGylated formulation of SN-38. Endpoints measured were percent tumor regression, and event-free survival (EFS). The correlation between response to PLX038A was compared to that for ten models treated with irinotecan (2.5 mg/kg × 5 days × 2 cycles), using a traditional design (10 mice/group). Correlations between tumor sensitivity, genetic mutations and gene expression were sought. Models showing no disease at week 20 were categorized as 'extreme responders' to PLX038A, whereas those with EFS less than 5 weeks were categorized as 'resistant'. RESULTS: The activity of PLX038A was evaluable in 31/32 models. PLX038A induced > 50% volume regressions in 25 models (78%). Initial tumor volume regression correlated only modestly with EFS (r2 = 0.238), but sensitivity to PLX038A was better correlated with response to irinotecan when one tumor hypersensitive to PLX038A was omitted (r2 = 0.6844). Mutations in 53BP1 were observed in three of six sensitive tumor models compared to none in resistant models (n = 6). CONCLUSIONS: This study demonstrates the feasibility of using a single-mouse design for assessing the antitumor activity of an agent, while encompassing greater genetic diversity representative of childhood cancers. PLX038A was highly active in most xenograft models, and tumor sensitivity to PLX038A was correlated with sensitivity to irinotecan, validating the single-mouse design in identifying agents with the same mechanism of action. Biomarkers that correlated with model sensitivity included wild-type TP53, or mutant TP53 but with a mutation in 53BP1, thus a defect in DNA damage response. These results support the value of the single-mouse experimental design.


Assuntos
Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Animais , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Irinotecano/farmacologia , Camundongos , Camundongos SCID , Estudos Prospectivos , Projetos de Pesquisa , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
14.
Mol Cancer Ther ; 19(2): 673-679, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31744896

RESUMO

The goal was to develop and characterize a companion diagnostic for the releasable PEG40kDa∼SN-38 oncology drug, PLX038, that would identify tumors susceptible to high accumulation of PLX038. PEG conjugates of the zirconium ligand desferroxamine B (DFB) of similar size and charge to PLX038 were prepared that contained one or four DFB, as well as one that contained three SN-38 moieties and one DFB. Uptake and associated kinetic parameters of the 89Zr-labeled nanocarriers were determined in tumor and normal tissues in mice using µPET/CT imaging. The data were fit to physiologically based pharmacokinetic models to simulate the mass-time profiles of distribution of conjugates in the tissues of interest. The time-activity curves for normal tissues showed high levels at the earliest time of measurement due to vascularization, followed by a monophasic loss. In tumors, levels were initially lower than in normal tissues but increased to 9% to 14% of injected dose over several days. The efflux half-life in tumors was very long, approximately 400 hours, and tumor levels remained at about 10% injected dose 9 days after injection. Compared with diagnostic liposomes, the PEG nanocarriers have a longer serum half-life, are retained in tumors at higher levels, remain there longer, and afford higher tumor exposure. The small PEG40kDa nanocarriers studied here show properties for passive targeting of tumors that are superior than most nanoparticles and might be effective probes to identify tumors susceptible to similar size therapeutic nanocarriers such as PLX038.


Assuntos
Polietilenoglicóis/uso terapêutico , Tomografia por Emissão de Pósitrons/métodos , Radioisótopos/uso terapêutico , Zircônio/uso terapêutico , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Cancer Chemother Pharmacol ; 85(1): 225-229, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31707444

RESUMO

PURPOSE: The purpose of this study was to determine the importance of UGT1A1 activity on the metabolism and pharmacokinetics of a releasable PEG ~ SN-38 conjugate, PLX038A. Irinotecan (CPT-11) is converted to the topoisomerase 1 inhibitor SN-38 by first-pass hepatic metabolism and is converted to its glucuronide SN-38G by UGT1A1. With diminished UGT1A1 activity, the high liver exposure to SN-38 can cause increased toxicity of CPT-11. In contrast, releasable PEG ~ SN-38 conjugates-such as PLX038-release SN-38 in the vascular compartment, and only low levels of SN-38 are expected to enter the liver by transport through the OATP1B1 transporter. METHODS: We measured CPT-11 and PLX038A metabolites in plasma and bile, and determined pharmacokinetics of PLX038A in UGT1A-deficient and replete rats. RESULTS: Compared to CPT-11, treatment of rats with PLX038A results in very low levels of biliary SN-38 and SN-38G, a low flux through UGT1A, and a low SN-38G/SN-38 ratio in plasma. Further, the pharmacokinetics of plasma PLX038A and SN-38 in rats deficient in UGT1A is unchanged compared to normal rats. CONCLUSIONS: The disposition of PEGylated SN-38 is independent of UGT1A activity in rats, and PLX038 may find utility in full-dose treatment of patients who are UGT1A1*28 homozygotes or have metastatic disease with coincidental or incidental liver dysfunction.


Assuntos
Camptotecina/análogos & derivados , Regulação da Expressão Gênica/efeitos dos fármacos , Glucuronatos/farmacologia , Glucuronosiltransferase/metabolismo , Irinotecano/farmacologia , Polietilenoglicóis/química , Pró-Fármacos/farmacologia , Inibidores da Topoisomerase I/farmacologia , Animais , Bile/metabolismo , Camptotecina/farmacocinética , Camptotecina/farmacologia , Glucuronatos/farmacocinética , Irinotecano/farmacocinética , Fígado/metabolismo , Pró-Fármacos/farmacocinética , Ratos , Ratos Gunn , Distribuição Tecidual , Inibidores da Topoisomerase I/farmacocinética
16.
Cancer Chemother Pharmacol ; 84(4): 729-738, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31321449

RESUMO

PURPOSE: Optimal efficacy of a macromolecular prodrug requires balancing the rate of drug release with the rate of prodrug elimination. Since circulating macromolecules have different elimination rates in different species, a prodrug optimal for one species will likely not be for another. The objectives of this work were (a) to develop an approach to optimize pharmacokinetics of a PEG~SN-38 prodrug in a particular species, (b) to use the approach to predict the pharmacokinetics of various prodrugs of SN-38 in the mouse and human, and (c) to develop a PEG~SN-38 conjugate that is optimized for mouse tumor models. METHODS: We developed models that describe the pharmacokinetics of a drug released from a prodrug by the relationship between the rates of drug release and elimination of the prodrug. We tested the model by varying the release rate of SN-38 from PEG~SN-38 conjugates in the setting of a constant prodrug elimination rate in the mouse. Finally, we tested the antitumor efficacy of a PEG~SN-38 optimized for the mouse. RESULTS: Optimization of a PEG~SN-38 prodrug was achieved by adjusting the rate of SN-38 release such that the ratio of t1/2,ß of released SN-38 to the t1/2 of prodrug elimination was 0.2-0.8. Using this approach, we could rationalize the efficacy of previous PEGylated SN-38 prodrugs in the mouse and human. Finally, a mouse-optimized PEG~SN-38 showed remarkable antitumor activity in BRCA1-deficient MX-1 xenografts; a single dose gave tumor regression, suppression, and shrinkage of massive tumors. CONCLUSIONS: The efficacy of a macromolecular prodrug can be optimized for a given species by balancing the rate of drug release from the carrier with the rate of prodrug elimination.


Assuntos
Liberação Controlada de Fármacos , Irinotecano/farmacocinética , Taxa de Depuração Metabólica , Pró-Fármacos/farmacocinética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Antineoplásicos/farmacocinética , Portadores de Fármacos/farmacocinética , Sistemas de Liberação de Medicamentos , Meia-Vida , Substâncias Macromoleculares/farmacocinética , Camundongos , Polietilenoglicóis/farmacologia , Inibidores da Topoisomerase I/farmacocinética , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Transl Vis Sci Technol ; 7(4): 21, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30174998

RESUMO

PURPOSE: The short half lives of small molecules in the vitreous requires frequent repeated intravitreal injections that are impractical for treatment of chronic eye diseases. We sought to develop a method for increasing the intravitreal half-life of small-molecule drugs. METHODS: We adapted a technology for controlled release of drugs from macromolecular carriers for use as a long-acting intravitreal delivery system for small molecules. As a prototype, a small molecule complement factor D inhibitor with an intravitreal half-life of 7 hours was covalently attached to a 4-arm PEG40kDa by a self-cleaving ß-eliminative linker with a cleavage half-life of approximately 1 week. RESULTS: After intravitreal injection in rabbits, the drug was slowly released in the vitreous, and equilibrated with the retina and choroid. The intravitreal half-life of the intact PEG-drug conjugate in the rabbit was 7 days, and that of the released drug was 3.6 days. We simulated the anticipated pharmacokinetics of the delivery system in human vitreous, and estimated that the half-life of a 4-arm PEG40kDa conjugate would be approximately 2 weeks, and that of the released drug would be approximately 5 days. CONCLUSIONS: We posit that a linker with a cleavage half life of 2 weeks would confer a half life of approximately 7 days to a released small molecule drug in humans, comparable to the half life of approved intravitreal injected macromolecular drugs. TRANSLATIONAL RELEVANCE: With this technology, a potent small molecule with an appropriate therapeutic window should be administrable by intravitreal injections in the human at once-monthly intervals.

18.
J Control Release ; 278: 74-79, 2018 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-29577950

RESUMO

We have developed a chemically-controlled drug delivery system in which a drug is covalently attached via a carbamate to hydrogel microspheres using a ß-eliminative linker; rate-determining proton removal from a CH bond adjacent to an electron withdrawing group results in a ß-elimination to cleave the carbamate and release the drug. After subcutaneous injection of the hydrogel-drug conjugate, the drug is slowly released into the systemic circulation and acquires an elimination t1/2,ß that matches the t1/2 of linker cleavage. A similar ß-eliminative linker with a slower cleavage rate is installed into crosslinks of the polymer to trigger gel degradation after drug release. We have now prepared ß-eliminative linkers that contain deuterium in place of the hydrogen whose removal initiates cleavage. In vitro model systems of drug release and degelation show large primary deuterium kinetic isotope effects of kH/kD ~ 2.5 to 3.5. Using a deuterated linker to attach the peptide octreotide to hydrogel-microspheres, the in vivo t1/2,ß of the drug was increased from ~1.5 to 4.5 weeks in the rat. Similarly, the in vivo time to biodegradation of hydrogels with deuterium-containing crosslinks could be extended ~2.5-fold compared to hydrogen-containing counterparts. Thus, the use of primary deuterium kinetic isotope effects in a single platform technology can control rates of ß-elimination reactions in drug release and polymer biodegradation rates.


Assuntos
Deutério/química , Sistemas de Liberação de Medicamentos , Octreotida/administração & dosagem , Polímeros/química , Animais , Reagentes de Ligações Cruzadas/química , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Meia-Vida , Hidrogéis , Octreotida/química , Octreotida/farmacocinética , Ratos
19.
ACS Chem Biol ; 12(8): 2107-2116, 2017 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-28605180

RESUMO

We have developed a chemically controlled very long-acting delivery system to support once-monthly administration of a peptidic GLP-1R agonist. Initially, the prototypical GLP-1R agonist exenatide was covalently attached to hydrogel microspheres by a self-cleaving ß-eliminative linker; after subcutaneous injection in rats, the peptide was slowly released into the systemic circulation. However, the short serum exenatide half-life suggested its degradation in the subcutaneous depot. We found that exenatide undergoes deamidation at Asn28 with an in vitro and in vivo half-life of approximately 2 weeks. The [Gln28]exenatide variant and exenatide showed indistinguishable GLP-1R agonist activities as well as pharmacokinetic and pharmacodynamic effects in rodents; however, unlike exenatide, [Gln28]exenatide is stable for long periods. Two different hydrogel-[Gln28]exenatide conjugates were prepared using ß-eliminative linkers with different cleavage rates. After subcutaneous injection in rodents, the serum half-lives for the released [Gln28]exenatide from the two conjugates were about 2 weeks and one month. Two monthly injections of the latter in the Zucker diabetic fatty rat showed pharmacodynamic effects indistinguishable from two months of continuously infused exenatide. Pharmacokinetic simulations indicate that the delivery system should serve well as a once-monthly GLP-1R agonist for treatment of type 2 diabetes in humans.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Hipoglicemiantes/administração & dosagem , Microesferas , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/administração & dosagem , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacocinética , Hipoglicemiantes/farmacocinética , Estrutura Molecular , Fatores de Tempo
20.
J Biomed Mater Res B Appl Biomater ; 105(6): 1602-1611, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-27149244

RESUMO

We developed two types of polyethylene glycol (PEG)-based surgical sealants, which we have termed the PER and PRO series. In one, the PRO series, an 8-arm PEG containing activated carbonyl end-groups was reacted with a 4-armed amino-PEG. In the second, the PER series, a 4-arm PEG containing bi-functional end groups with four azides and four activated esters was reacted by strain-promoted alkyne-azide cycloaddition with a 4-arm cyclooctyne-PEG to give a near-ideal Tetra-PEG hydrogel. The sealants showed predictably tunable strength, swelling, adhesion, and gelation properties. The gels were compared to commercially available PEG-based sealants and exhibit physical properties equivalent to or better than the standards. Variants of each gel-format were prepared that contained a ß-eliminative cleavable linker in the crosslinks to control degradation rate. Linkers of this type self-cleave with half-lives spanning from hours to years, and offer the unique ability to precisely tune the degradation to match the healing process. In addition, these linkers could serve as cleavable tethers for controlled drug release. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1602-1611, 2017.


Assuntos
Plásticos Biodegradáveis/química , Teste de Materiais , Polietilenoglicóis/química , Adesivos Teciduais/química , Humanos , Pressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA