Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
J Cell Biol ; 223(8)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38865090

RESUMO

CDC7 kinase is crucial for DNA replication initiation and is involved in fork processing and replication stress response. Human CDC7 requires the binding of either DBF4 or DRF1 for its activity. However, it is unclear whether the two regulatory subunits target CDC7 to a specific set of substrates, thus having different biological functions, or if they act redundantly. Using genome editing technology, we generated isogenic cell lines deficient in either DBF4 or DRF1: these cells are viable but present signs of genomic instability, indicating that both can independently support CDC7 for bulk DNA replication. Nonetheless, DBF4-deficient cells show altered replication efficiency, partial deficiency in MCM helicase phosphorylation, and alterations in the replication timing of discrete genomic regions. Notably, we find that CDC7 function at replication forks is entirely dependent on DBF4 and not on DRF1. Thus, DBF4 is the primary regulator of CDC7 activity, mediating most of its functions in unperturbed DNA replication and upon replication interference.


Assuntos
Proteínas de Ciclo Celular , Replicação do DNA , Proteínas Serina-Treonina Quinases , Replicação do DNA/genética , Humanos , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Fosforilação , Instabilidade Genômica/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Ligação a DNA
2.
FEBS J ; 291(14): 3147-3168, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38555567

RESUMO

Drugs that block DNA replication prevent cell proliferation, which may result in anticancer activity. The latter is dependent on the drug's mode of action as well as on cell type-dependent responses to treatment. The inhibition of Cell division cycle 7-related protein kinase (CDC7), a key regulator of DNA replication, decreases the efficiency of origin firing and hampers the restarting of paused replication forks. Here, we show that upon prolonged CDC7 inhibition, breast-derived MCF10A cells progressively withdraw from the cell cycle and enter a reversible senescent-like state. This is characterised by the rewiring of the transcriptional programme with the induction of cytokine and chemokine expression and correlates with the accumulation of Cyclic GMP-AMP synthase (cGAS)-positive micronuclei. Importantly, cell fate depends on Cellular tumour antigen p53 (p53) function as cells no longer enter senescence but are funnelled into apoptosis upon p53 knockout. This work uncovers key features of the secondary response to CDC7 inhibitors, which could aid the development of these compounds as anticancer drugs.


Assuntos
Proteínas de Ciclo Celular , Senescência Celular , Células Epiteliais , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Senescência Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/antagonistas & inibidores , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Inflamação/patologia , Inflamação/metabolismo , Inflamação/genética , Proliferação de Células/efeitos dos fármacos , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/tratamento farmacológico
3.
iScience ; 26(6): 106951, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37378325

RESUMO

CDC7 kinase is crucial for DNA replication initiation and fork processing. CDC7 inhibition mildly activates the ATR pathway, which further limits origin firing; however, to date the relationship between CDC7 and ATR remains controversial. We show that CDC7 and ATR inhibitors are either synergistic or antagonistic depending on the degree of inhibition of each individual kinase. We find that Polypyrimidine Tract Binding Protein 1 (PTBP1) is important for ATR activity in response to CDC7 inhibition and genotoxic agents. Compromised PTBP1 expression makes cells defective in RPA recruitment, genomically unstable, and resistant to CDC7 inhibitors. PTBP1 deficiency affects the expression and splicing of many genes indicating a multifactorial impact on drug response. We find that an exon skipping event in RAD51AP1 contributes to checkpoint deficiency in PTBP1-deficient cells. These results identify PTBP1 as a key factor in replication stress response and define how ATR activity modulates the activity of CDC7 inhibitors.

4.
Cell Rep ; 32(9): 108096, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32877678

RESUMO

DNA replication initiates from multiple origins, and selective CDC7 kinase inhibitors (CDC7is) restrain cell proliferation by limiting origin firing. We have performed a CRISPR-Cas9 genome-wide screen to identify genes that, when lost, promote the proliferation of cells treated with sub-efficacious doses of a CDC7i. We have found that the loss of function of ETAA1, an ATR activator, and RIF1 reduce the sensitivity to CDC7is by allowing DNA synthesis to occur more efficiently, notably during late S phase. We show that partial CDC7 inhibition induces ATR mainly through ETAA1, and that if ATR is subsequently inhibited, origin firing is unleashed in a CDK- and CDC7-dependent manner. Cells are then driven into a premature and highly defective mitosis, a phenotype that can be recapitulated by ETAA1 and TOPBP1 co-depletion. This work defines how ATR mediates the effects of CDC7 inhibition, establishing the framework to understand how the origin firing checkpoint functions.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Ciclo Celular/antagonistas & inibidores , Replicação do DNA/fisiologia , DNA/biossíntese , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Antígenos de Superfície/genética , Antígenos de Superfície/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , DNA/genética , Células HEK293 , Células HeLa , Humanos , Mitose/fisiologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
5.
EMBO Rep ; 21(8): e48920, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32496651

RESUMO

The CDC7 kinase is essential for the activation of DNA replication origins and has been implicated in the replication stress response. Using a highly specific chemical inhibitor and a chemical genetic approach, we now show that CDC7 activity is required to coordinate multiple MRE11-dependent processes occurring at replication forks, independently from its role in origin firing. CDC7 localizes at replication forks and, similarly to MRE11, mediates active slowing of fork progression upon mild topoisomerase inhibition. Both proteins are also retained on stalled forks, where they promote fork processing and restart. Moreover, MRE11 phosphorylation and localization at replication factories are progressively lost upon CDC7 inhibition. Finally, CDC7 activity at reversed forks is required for their pathological MRE11-dependent degradation in BRCA2-deficient cells. Thus, upon replication interference CDC7 is a key regulator of fork progression, processing and integrity. These results highlight a dual role for CDC7 in replication, modulating both initiation and elongation steps of DNA synthesis, and identify a key intervention point for anticancer therapies exploiting replication interference.


Assuntos
Quebra Cromossômica , Replicação do DNA , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Humanos , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Origem de Replicação/genética
6.
J Cell Sci ; 133(3)2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-31964704

RESUMO

In order to prevent the deleterious effects of genotoxic agents, cells have developed complex surveillance mechanisms and DNA repair pathways that allow them to maintain genome integrity. The ubiquitin-specific protease 9X (USP9X) contributes to genome stability during DNA replication and chromosome segregation. Depletion of USP9X leads to DNA double-strand breaks, some of which are triggered by replication fork collapse. Here, we identify USP9X as a novel regulator of homologous recombination (HR) DNA repair in human cells. By performing cellular HR reporter, irradiation-induced focus formation and colony formation assays, we show that USP9X is required for efficient HR. Mechanistically, we show USP9X is important to sustain the expression levels of key HR factors, namely BRCA1 and RAD51 through a non-canonical regulation of their mRNA abundance. Intriguingly, we find that the contribution of USP9X to BRCA1 and RAD51 expression is independent of its known catalytic activity. Thus, this work identifies USP9X as a regulator of HR, demonstrates a novel mechanism by which USP9X can regulate protein levels, and provides insights in to the regulation of BRCA1 and RAD51 mRNA.This article has an associated First Person interview with the first author of the paper.


Assuntos
Rad51 Recombinase , Reparo de DNA por Recombinação , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Dano ao DNA , Reparo do DNA/genética , Replicação do DNA , Recombinação Homóloga/genética , Humanos , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Ubiquitina Tiolesterase/genética , Proteases Específicas de Ubiquitina/genética
7.
Sci Rep ; 8(1): 15752, 2018 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-30361682

RESUMO

Acute myeloid leukaemia (AML) is an aggressive cancer with 50-75% of patients relapsing even after successful chemotherapy. The role of the bone marrow microenvironment (BMM) in protecting AML cells from chemotherapeutics and causing consequent relapse is increasingly recognised. However the role that the anti-apoptotic Bcl-2 proteins play as effectors of BMM-mediated drug resistance are less understood. Here we show that bone marrow mesenchymal stromal cells (BMSC) provide resistance to AML cells against BH3-mimetics, cytarabine and daunorubicin, but this is not mediated by Bcl-2 and/or Bcl-XL as previously thought. Instead, BMSCs induced Mcl-1 expression over Bcl-2 and/or Bcl-XL in AML cells and inhibition of Mcl-1 with a small-molecule inhibitor, A1210477, or repressing its expression with the CDC7/CDK9 dual-inhibitor, PHA-767491 restored sensitivity to BH3-mimetics. Furthermore, combined inhibition of Bcl-2/Bcl-XL and Mcl-1 could revert BMSC-mediated resistance against cytarabine + daunorubicin. Importantly, the CD34+/CD38- leukemic stem cell-encompassing population was equally sensitive to the combination of PHA-767491 and ABT-737. These results indicate that Bcl-2/Bcl-XL and Mcl-1 act in a redundant fashion as effectors of BMM-mediated AML drug resistance and highlight the potential of Mcl-1-repression to revert BMM-mediated drug resistance in the leukemic stem cell population, thus, prevent disease relapse and ultimately improve patient survival.


Assuntos
Medula Óssea/metabolismo , Proteínas de Ciclo Celular/antagonistas & inibidores , Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos , Leucemia Mieloide Aguda/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Piperidonas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Pirróis/farmacologia , Antígenos CD/metabolismo , Compostos de Bifenilo/farmacologia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Quinase 9 Dependente de Ciclina/metabolismo , Citarabina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Leucemia Mieloide Aguda/patologia , Nitrofenóis/farmacologia , Piperazinas/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo , Sulfonamidas/farmacologia , Microambiente Tumoral/efeitos dos fármacos , Proteína bcl-X/metabolismo
8.
ACS Chem Biol ; 12(7): 1893-1902, 2017 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-28560864

RESUMO

The CDC7 kinase, by phosphorylating the MCM DNA helicase, is a key switch for DNA replication initiation. ATP competitive CDC7 inhibitors are being developed as potential anticancer agents; however how human cells respond to the selective pharmacological inhibition of this kinase is controversial and not understood. Here we have characterized the mode of action of the two widely used CDC7 inhibitors, PHA-767491 and XL-413, which have become important tool compounds to explore the kinase's cellular functions. We have used a chemical genetics approach to further characterize pharmacological CDC7 inhibition and CRISPR/CAS9 technology to assess the requirement for kinase activity for cell proliferation. We show that, in human breast cells, CDC7 is essential and that CDC7 kinase activity is formally required for proliferation. However, full and sustained inhibition of the kinase, which is required to block the cell-cycle progression with ATP competitor compounds, is problematic to achieve. We establish that MCM2 phosphorylation is highly sensitive to CDC7 inhibition and, as a biomarker, it lacks in dynamic range since it is easily lost at concentrations of inhibitors that only mildly affect DNA synthesis. Furthermore, we find that the cellular effects of selective CDC7 inhibitors can be altered by the concomitant inhibition of cell-cycle and transcriptional CDKs. This work shows that DNA replication and cell proliferation can occur with reduced CDC7 activity for at least 5 days and that the bulk of DNA synthesis is not tightly coupled to MCM2 phosphorylation and provides guidance for the development of next generation CDC7 inhibitors.


Assuntos
Replicação do DNA/efeitos dos fármacos , Piperidonas/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Pirimidinonas/farmacologia , Pirróis/farmacologia , Trifosfato de Adenosina/química , Ligação Competitiva/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Fosforilação/efeitos dos fármacos , Piperidonas/química , Pirimidinonas/química , Pirróis/química
9.
Nucleic Acids Res ; 44(18): 8786-8798, 2016 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-27407105

RESUMO

In eukaryotic cells the CDC7/DBF4 kinase, also known as DBF4-dependent kinase (DDK), is required for the firing of DNA replication origins. CDC7 is also involved in replication stress responses and its depletion sensitises cells to drugs that affect fork progression, including Topoisomerase 2 poisons. Although CDC7 is an important regulator of cell division, relatively few substrates and bona-fide CDC7 phosphorylation sites have been identified to date in human cells. In this study, we have generated an active recombinant CDC7/DBF4 kinase that can utilize bulky ATP analogues. By performing in vitro kinase assays using benzyl-thio-ATP, we have identified TOP2A as a primary CDC7 substrate in nuclear extracts, and serine 1213 and serine 1525 as in vitro phosphorylation sites. We show that CDC7/DBF4 and TOP2A interact in cells, that this interaction mainly occurs early in S-phase, and that it is compromised after treatment with CDC7 inhibitors. We further provide evidence that human DBF4 localises at centromeres, to which TOP2A is progressively recruited during S-phase. Importantly, we found that CDC7/DBF4 down-regulation, as well S1213A/S1525A TOP2A mutations can advance the timing of centromeric TOP2A recruitment in S-phase. Our results indicate that TOP2A is a novel DDK target and have important implications for centromere biology.


Assuntos
Antígenos de Neoplasias/metabolismo , Proteínas de Ciclo Celular/metabolismo , Centrômero/genética , Centrômero/metabolismo , DNA Topoisomerases Tipo II/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Ciclo Celular/antagonistas & inibidores , Replicação do DNA , Humanos , Fosforilação , Proteínas de Ligação a Poli-ADP-Ribose , Ligação Proteica , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Origem de Replicação , Fase S
10.
Cancer Res ; 76(8): 2384-93, 2016 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-26921344

RESUMO

Coordination of the multiple processes underlying DNA replication is key for maintaining genome stability and preventing tumorigenesis. CLASPIN, a critical player in replication fork stabilization and checkpoint responses, must be tightly regulated during the cell cycle to prevent the accumulation of DNA damage. In this study, we used a quantitative proteomics approach and identified USP9X as a novel CLASPIN-interacting protein. USP9X is a deubiquitinase involved in multiple signaling and survival pathways whose tumor suppressor or oncogenic activity is highly context dependent. We found that USP9X regulated the expression and stability of CLASPIN in an S-phase-specific manner. USP9X depletion profoundly impairs the progression of DNA replication forks, causing unscheduled termination events with a frequency similar to CLASPIN depletion, resulting in excessive endogenous DNA damage. Importantly, restoration of CLASPIN expression in USP9X-depleted cells partially suppressed the accumulation of DNA damage. Furthermore, USP9X depletion compromised CHK1 activation in response to hydroxyurea and UV, thus promoting hypersensitivity to drug-induced replication stress. Taken together, our results reveal a novel role for USP9X in the maintenance of genomic stability during DNA replication and provide potential mechanistic insights into its tumor suppressor role in certain malignancies. Cancer Res; 76(8); 2384-93. ©2016 AACR.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Dano ao DNA/fisiologia , Replicação do DNA/fisiologia , Fase S , Ubiquitina Tiolesterase/fisiologia , Linhagem Celular Tumoral , Humanos
11.
Biol Open ; 5(1): 11-9, 2015 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26685311

RESUMO

During mitotic arrest induced by microtubule targeting drugs, the weakening of the spindle assembly checkpoint (SAC) allows cells to progress through the cell cycle without chromosome segregation occurring. PLK1 kinase plays a major role in mitosis and emerging evidence indicates that PLK1 is also involved in establishing the checkpoint and maintaining SAC signalling. However, mechanistically, the role of PLK1 in the SAC is not fully understood, with several recent reports indicating that it can cooperate with either one of the major checkpoint kinases, Aurora B or MPS1. In this study, we assess the role of PLK1 in SAC maintenance. We find that in nocodazole-arrested U2OS cells, PLK1 activity is continuously required for maintaining Aurora B protein localisation and activity at kinetochores. Consistent with published data we find that upon PLK1 inhibition, phosphoThr3-H3, a marker of Haspin activity, is reduced. Intriguingly, Aurora B inhibition causes PLK1 to relocalise from kinetochores into fewer and much larger foci, possibly due to incomplete recruitment of outer kinetochore proteins. Importantly, PLK1 inhibition, together with partial inhibition of Aurora B, allows efficient SAC override to occur. This phenotype is more pronounced than the phenotype observed by combining the same PLK1 inhibitors with partial MPS1 inhibition. We also find that PLK1 inhibition does not obviously cooperate with Haspin inhibition to promote SAC override. These results indicate that PLK1 is directly involved in maintaining efficient SAC signalling, possibly by cooperating in a positive feedback loop with Aurora B, and that partially redundant mechanisms exist which reinforce the SAC.

12.
Chemistry ; 21(50): 18109-21, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26531227

RESUMO

Migrastatin and isomigrastatin analogues have been synthesised in order to contribute to structure-activity studies on tumour cell migration inhibitors. These include macrocycles varying in ring size, functionality and alkene stereochemistry, as well as glucuronides. The synthesis work included application of the Saegusa-Ito reaction for regio- and stereoselective unsaturated macroketone formation, diastereoselective Brown allylation to generate 9-methylmigrastatin analogues and chelation-induced anomerisation to vary glucuronide configuration. Compounds were tested in vitro against both breast and pancreatic cancer cell lines and inhibition of tumour cell migration was observed in both wound-healing (scratch) and Boyden chamber assays. One unsaturated macroketone showed low affinity for a range of secondary drug targets, indicating it is at low risk of displaying adverse side effects.


Assuntos
Alcenos/química , Movimento Celular/efeitos dos fármacos , Glucuronídeos/química , Compostos Macrocíclicos/química , Compostos Macrocíclicos/farmacologia , Macrolídeos/química , Macrolídeos/farmacologia , Neoplasias Pancreáticas/química , Piperidonas/química , Piperidonas/farmacologia , Linhagem Celular Tumoral , Feminino , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Relação Estrutura-Atividade
13.
Chemistry ; 21(50): 17993, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26537992

RESUMO

Invited for the cover of this issue are Paul V. Murphy and co-workers at the National University of Ireland Galway (NUI Galway) and Warsaw University. The image depicts MGSTA-6 giving a stop signal to tumour cells that are on the move. Read the full text of the article at 10.1002/chem.201502861.


Assuntos
Movimento Celular/efeitos dos fármacos , Compostos Macrocíclicos/química , Macrolídeos/síntese química , Macrolídeos/farmacologia , Piperidonas/síntese química , Piperidonas/farmacologia , Linhagem Celular Tumoral , Humanos , Macrolídeos/química , Estrutura Molecular , Piperidonas/química , Relação Estrutura-Atividade
14.
PLoS One ; 9(6): e98891, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24902048

RESUMO

DNA replication is an essential process for cell division and as such it is a process that is directly targeted by several anticancer drugs. CDC7 plays an essential role in the activation of replication origins and has recently been proposed as a novel target for drug discovery. The MCM DNA helicase complex (MCM2-7) is a key target of the CDC7 kinase, and MCM phosphorylation status at specific sites is a reliable biomarker of CDC7 cellular activity. In this work we describe a cell-based assay that utilizes the "In Cell Western Technique" (ICW) to identify compounds that affect cellular CDC7 activity. By screening a library of approved drugs and kinase inhibitors we found several compounds that can affect CDC7-dependent phosphorylation of MCM2 in HeLa cells. Among these, Mitoxantrone, a topoisomerase inhibitor, and Ryuvidine, previously described as a CDK4 inhibitor, cause a reduction in phosphorylated MCM2 levels and a sudden blockade of DNA synthesis that is accompanied by an ATM-dependent checkpoint response. This study sheds light on the previously observed cytotoxity of Ryuvidine, strongly suggesting that it is related to its effect of causing DNA damage.


Assuntos
Dano ao DNA/efeitos dos fármacos , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Ensaios de Triagem em Larga Escala/métodos , Componente 2 do Complexo de Manutenção de Minicromossomo/metabolismo , Proteínas de Ciclo Celular/metabolismo , Replicação do DNA/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/química , Células HeLa , Humanos , Fosforilação/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Reprodutibilidade dos Testes , Bibliotecas de Moléculas Pequenas
15.
Cancers (Basel) ; 5(3): 901-18, 2013 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-24202326

RESUMO

Two key features of myeloma cells are the deregulation of the cell cycle and the dependency on the expression of the BCL2 family of anti-apoptotic proteins. The cell division cycle 7 (CDC7) is an essential S-phase kinase and emerging CDC7 inhibitors are effective in a variety of preclinical cancer models. These compounds also inhibit CDK9 which is relevant for MCL-1 expression. The activity and mechanism of action of the dual CDC7/CDK9 inhibitor PHA-767491 was assessed in a panel of multiple myeloma cell lines, in primary samples from patients, in the presence of stromal cells and in combination with drugs used in current chemotherapeutic regimens. We report that in all conditions myeloma cells undergo cell death upon PHA-767491 treatment and we report an overall additive effect with melphalan, bortezomib and doxorubicin, thus supporting further assessment of targeting CDC7 and CDK9 in multiple myeloma.

16.
FEBS J ; 280(19): 4888-902, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23910567

RESUMO

The replication factor Cdc45 has essential functions in the initiation and elongation steps of eukaryotic DNA replication and plays an important role in the intra-S-phase checkpoint. Its interactions with other replication proteins during the cell cycle and after intra-S-phase checkpoint activation are only partially characterized. In the present study, we show that the C terminal part of Cdc45 may mediate its interactions with Claspin. The interactions of human Cdc45 with the three replication factors Claspin, replication protein A and DNA polymerase δ are maximal during the S phase. Following UVC-induced DNA damage, Cdc45-Claspin complex formation is reduced, whereas the binding of Cdc45 to replication protein A is not affected. We also show that treatment of cells with UCN-01 and phosphatidylinositol 3-kinase-like kinase inhibitors does not rescue the UV-induced destabilization of Cdc45-Claspin interactions, suggesting that the loss of the interaction between Cdc45 and Claspin occurs upstream of ataxia telangiectasia and Rad 3-related activation in the intra-S-phase checkpoint.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Linhagem Celular , Dano ao DNA/genética , Dano ao DNA/efeitos da radiação , Replicação do DNA/genética , Replicação do DNA/efeitos da radiação , Humanos
17.
Cell Cycle ; 12(10): 1560-8, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23598722

RESUMO

Claspin is a critical mediator protein in the DNA replication checkpoint, responsible for ATR-dependent activation of the effector kinase Chk1. Cdc7, an essential kinase required for the initiation of DNA replication, can also interact with and phosphorylate Claspin. In this study we use small-molecule inhibitors of Cdc7 kinase to further understand the relationship between Cdc7, Claspin and Chk1 activation. We demonstrate that inhibition of Cdc7 kinase delays HU-induced phosphorylation of Chk1 but does not affect the maintenance of the replication checkpoint once it is established. We find that while chromatin association of Claspin is not affected by Cdc7 inhibition, Claspin phosphorylation is attenuated following HU treatment, which may be responsible for the altered kinetics of HU-induced Chk1 phosphorylation. We demonstrate that Claspin is an in vitro substrate of Cdc7 kinase, and using mass-spectrometry, we identify multiple phosphorylation sites that help to define a Cdc7 phosphorylation motif. Finally, we show that the interaction between Claspin and Cdc7 is not dependent on Cdc7 kinase activity, but Claspin interaction with the DNA helicase subunit Mcm2 is lost upon Cdc7 inhibition. We propose Cdc7-dependent phosphorylation regulates critical protein-protein interactions and modulates Claspin's function in the DNA replication checkpoint.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Sequência de Aminoácidos , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Quinase 1 do Ponto de Checagem , Cromatografia Líquida de Alta Pressão , Replicação do DNA , Células HEK293 , Células HeLa , Humanos , Hidroxiureia/farmacologia , Espectrometria de Massas , Componente 2 do Complexo de Manutenção de Minicromossomo/metabolismo , Dados de Sequência Molecular , Fosfopeptídeos/análise , Fosfopeptídeos/química , Fosforilação/efeitos dos fármacos , Piperidonas/farmacologia , Mapas de Interação de Proteínas , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Pirróis/farmacologia , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Especificidade por Substrato
18.
Methods Mol Biol ; 986: 217-26, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23436415

RESUMO

Chronic Lymphocytic Leukaemia (CLL) is an incurable disease that warrants new therapeutic treatments. CLL cells accumulate in the peripheral blood, in the bone marrow and in secondary lymphoid organs. Unlike circulating CLL cells, CLL cells resident in these last two compartments display high chemoresistance and proliferative capacity. Given the importance of the microenvironment in this disease, strategies that aim to develop new therapeutic agents need to consider this critical factor. Various cell culture conditions have been described that attempt to emulate either the different types of microenvironments in which CLL cells are found or an individual component of a particular microenvironment. Here, a methodology that partially mimics the interaction between CLL cells and the CD3+ CD4+ CD154+ T cells is described. Moreover, within this method, two protocols are presented and compared that may partially recapitulate different physiological states. The methodology can be exploited for target validation and drug development in CLL.


Assuntos
Antineoplásicos/farmacologia , Técnicas de Cultura de Células , Microambiente Celular/fisiologia , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Células 3T3 , Animais , Complexo CD3/metabolismo , Linfócitos T CD4-Positivos , Ligante de CD40/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Cricetinae , Resistencia a Medicamentos Antineoplásicos , Humanos , Linfonodos/citologia , Camundongos , Microambiente Tumoral
19.
Mol Cancer Ther ; 10(9): 1624-34, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21768328

RESUMO

In chronic lymphocytic leukemia (CLL) the proliferation rate and resistance to drug-induced apoptosis are recognized as important factors in the outcome of treatment. In this study, we assess the activity and the mechanism of action of the prototype cell division cycle kinase 7 (Cdc7) inhibitor, PHA-767491, which inhibits the initiation of DNA replication but also has cyclin-dependent kinase 9 (Cdk9) inhibitory activity. We have studied the effects of this dual Cdc7/Cdk9 inhibitor in both quiescent CLL cells and CLL cells that have been induced to proliferate using a cellular coculture system that mimics the lymph node microenvironment. We find that this compound, originally developed as a DNA replication inhibitor, is particularly active in promoting mitochondrial dependent apoptosis in quiescent CLL cells purified from peripheral blood of patients regardless of recognized risk factors. In this setting, apoptosis is preceded by a decrease in the levels of Mcl-1 protein and transcript possibly due to inhibition of Cdk9. Following stimulation by CD154 and interleukin-4, CLL cells become highly chemoresistant, reenter into the cell cycle, reexpress Cdc7 kinase, a key molecular switch for the initiation of DNA replication, replicate their DNA, and undergo cell division. In this context, treatment with PHA-767491 abolished DNA synthesis by inhibiting Cdc7 but is less effective in triggering cell death, although Mcl-1 protein is no longer detectable. Thus, dual Cdc7/Cdk9 inhibition has the potential to target both the quiescent and actively proliferating CLL populations through two distinct mechanisms and may be a new therapeutic strategy in CLL.


Assuntos
Antineoplásicos/farmacologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Ciclo Celular/efeitos dos fármacos , Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Leucemia Linfocítica Crônica de Células B/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Ligante de CD40/metabolismo , Caspases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Quinase 9 Dependente de Ciclina/metabolismo , Replicação do DNA/efeitos dos fármacos , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-4/farmacologia , Leucemia Linfocítica Crônica de Células B/genética , Camundongos , Proteína de Sequência 1 de Leucemia de Células Mieloides , Células NIH 3T3 , Fosforilação/efeitos dos fármacos , Piperidonas/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Pirróis/farmacologia , RNA Polimerase II/metabolismo , Transdução de Sinais/efeitos dos fármacos
20.
J Neuropathol Exp Neurol ; 70(7): 578-87, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21666500

RESUMO

Retinoblastoma protein (pRb) is a ubiquitous 928-amino acid cell cycle regulatory molecule with diverse biologic activities. One critical function of pRb is the control of the G1-to-S phase checkpoint of the cell cycle. In the hypophosphorylated state, pRb suppresses the activity of E2F transcription factors thereby inhibiting transcription of cell cycle-promoting genes. On phosphorylation, primarily by cyclin-dependent kinases, phosphorylated pRb dissociates from E2F and permits cell cycle progression. We previously found phosphorylated pRb to be intimately associated with hyperphosphorylated tau-containing neurofibrillary tangles of Alzheimer disease (AD), the pathogenesis of which is believed to involve dysregulation of the cell cycle and marked neuronal death. Here, we used immunohistochemistry to investigate the presence of phosphorylated pRb in other distinct neurodegenerative diseases that share the common characteristic of hyperphosphorylated tau pathology and neuronal loss with AD.We found colocalized labeling of tau pathology and phosphorylated pRb in Pick disease and progressive supranuclear palsy (3 cases each), neurodegeneration with brain iron accumulation type 1 (2 cases), and Parkinson-amyotrophic lateral sclerosis of Guam, subacute sclerosing panencephalitis, frontotemporal dementia and Parkinsonism linked to chromosome 17, and dementia pugilistica (1 case each). These observations further implicate aberrant neuronal cell cycle progression in neurodegenerative diseases, particularly tauopathies, and suggest a novel target for therapeutic intervention.


Assuntos
Tronco Encefálico/patologia , Hipocampo/patologia , Proteína do Retinoblastoma/metabolismo , Tauopatias/patologia , Proteínas tau/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer , Tronco Encefálico/metabolismo , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Hipocampo/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Emaranhados Neurofibrilares/metabolismo , Fosforilação/fisiologia , Proteína do Retinoblastoma/genética , Paralisia Supranuclear Progressiva/metabolismo , Paralisia Supranuclear Progressiva/patologia , Tauopatias/classificação , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA