RESUMO
Lightning generated electromagnetic impulses propagating in the magnetospheric plasma disperse into whistlers - several seconds long radio wave signals with decreasing frequency. Sometimes, multiple reflections form long echo trains containing many whistlers with increasing dispersion. On January 3, 2017, two necessary prerequisites - a pronounced lightning activity and a magnetospheric plasma duct - allowed for observations of a large number of whistler echo trains by the high-latitude station in Kannuslehto, Finland. Our investigation reveals that the duct existed for nearly eight hours. We show that causative lightning sferics arrived to the duct entry from three different winter thunderstorms: a small storm at the Norwegian coast, which produced energetic lightning capable to trigger echo trains in 50% of cases, and two large storms at unexpectedly distant locations in the Mediterranean region. Our results show that intense thunderstorms can repetitively feed electromagnetic energy into a magnetospheric duct and form whistler echo trains after subionospheric propagation over distances as large as 4000 km.
RESUMO
We provide a post-mission assessment of the science and data from the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) investigation on the NASA Van Allen Probes mission. An overview of important scientific results is presented, covering all of the key wave modes and DC magnetic fields measured by EMFISIS. Discussion of the data products, which are publicly available, follows to provide users with guidance on characteristics and known issues of the measurements. We present guidance on the correct use of derived products, in particular, the wave-normal analysis (WNA) which yields fundamental wave properties such as polarization, ellipticity, and Poynting flux. We also give information about the plasma density derived from measuring the upper hybrid line in the inner magnetosphere.
RESUMO
The Juno spacecraft's polar orbits have enabled direct sampling of Jupiter's low-altitude auroral field lines. While various data sets have identified unique features over Jupiter's main aurora, they are yet to be analyzed altogether to determine how they can be reconciled and fit into the bigger picture of Jupiter's auroral generation mechanisms. Jupiter's main aurora has been classified into distinct "zones", based on repeatable signatures found in energetic electron and proton spectra. We combine fields, particles, and plasma wave data sets to analyze Zone-I and Zone-II, which are suggested to carry upward and downward field-aligned currents, respectively. We find Zone-I to have well-defined boundaries across all data sets. H+ and/or H3 + cyclotron waves are commonly observed in Zone-I in the presence of energetic upward H+ beams and downward energetic electron beams. Zone-II, on the other hand, does not have a clear poleward boundary with the polar cap, and its signatures are more sporadic. Large-amplitude solitary waves, which are reminiscent of those ubiquitous in Earth's downward current region, are a key feature of Zone-II. Alfvénic fluctuations are most prominent in the diffuse aurora and are repeatedly found to diminish in Zone-I and Zone-II, likely due to dissipation, at higher altitudes, to energize auroral electrons. Finally, we identify significant electron density depletions, by up to 2 orders of magnitude, in Zone-I, and discuss their important implications for the development of parallel potentials, Alfvénic dissipation, and radio wave generation.
RESUMO
Plumes have been identified as an access region for chorus waves to enter the plasmasphere. Here, for the first time, chorus wave properties are parameterized by distance from the plume boundary. Case studies and statistical analysis indicate that the polar wave vector angle, θ k , of chorus becomes more oblique near the plume edge. Occurrence rates of θ k > 35° on the plume boundary are approximately double that observed further away from the plume. Whilst the increase in θ k is apparent on both plume edges, the distribution of θ k exhibits different behavior between the Eastward and Westward boundaries. In general, the distribution of azimuthal wave vector angles, Ï k , is symmetric about the anti-Earthwards direction. However, near the Eastward plume boundary, an Eastwards skew of Ï k is reported. This result provides new insight on chorus propagation in the context of the chorus-to-hiss mechanism, and has implications for quantifying wave-particle interactions in the near-plume region.
RESUMO
This paper presents the highlights of joint observations of the inner magnetosphere by the Arase spacecraft, the Van Allen Probes spacecraft, and ground-based experiments integrated into spacecraft programs. The concurrent operation of the two missions in 2017-2019 facilitated the separation of the spatial and temporal structures of dynamic phenomena occurring in the inner magnetosphere. Because the orbital inclination angle of Arase is larger than that of Van Allen Probes, Arase collected observations at higher L -shells up to L â¼ 10 . After March 2017, similar variations in plasma and waves were detected by Van Allen Probes and Arase. We describe plasma wave observations at longitudinally separated locations in space and geomagnetically-conjugate locations in space and on the ground. The results of instrument intercalibrations between the two missions are also presented. Arase continued its normal operation after the scientific operation of Van Allen Probes completed in October 2019. The combined Van Allen Probes (2012-2019) and Arase (2017-present) observations will cover a full solar cycle. This will be the first comprehensive long-term observation of the inner magnetosphere and radiation belts.
RESUMO
The Juno Waves instrument measured plasma waves associated with Ganymede's magnetosphere during its flyby on 7 June, day 158, 2021. Three distinct regions were identified including a wake, and nightside and dayside regions in the magnetosphere distinguished by their electron densities and associated variability. The magnetosphere includes electron cyclotron harmonic emissions including a band at the upper hybrid frequency, as well as whistler-mode chorus and hiss. These waves likely interact with energetic electrons in Ganymede's magnetosphere by pitch angle scattering and/or accelerating the electrons. The wake is accentuated by low-frequency turbulence and electrostatic solitary waves. Radio emissions observed before and after the flyby likely have their source in Ganymede's magnetosphere.
RESUMO
The common phenomenon of lightning still harbors many secrets such as what are the conditions for lightning initiation and what is driving the discharge to propagate over several tens of kilometers through the atmosphere forming conducting ionized channels called leaders. Since lightning is an electric discharge phenomenon, there are positively and negatively charged leaders. In this work we report on measurements made with the LOFAR radio telescope, an instrument primarily build for radio-astronomy observations. It is observed that a negative leader rather suddenly changes, for a few milliseconds, into a mode where it radiates 100 times more VHF power than typical negative leaders after which it spawns a large number of more typical negative leaders. This mode occurs during the initial stage, soon after initiation, of all lightning flashes we have mapped (about 25). For some flashes this mode occurs also well after initiation and we show one case where it is triggered twice, some 100 ms apart. We postulate that this is indicative of a small (order of 5 km[Formula: see text]) high charge pocket. Lightning thus appears to be initiated exclusively in the vicinity of such a small but dense charge pocket.
RESUMO
Thunderstorm ground enhancement (TGE) is a phenomenon that enhances radiation background on the ground related to thunderstorm activity and charge structure of the thundercloud. On the other hand, the rise of gamma background is connected with precipitation by the washout of radon progeny from the atmosphere. In our analysis, we examined known enhancements of gamma background, previously attributed solely to radon progeny, using data from the Czech Radiation Monitoring Network (RMN) to investigate the enhancements with respect to thunderstorms and TGE phenomena. We also used radar precipitation data and data from the lightning location network to analyze their influences on the radiation background enhancement during three thunderstorm events that occurred in summer 2016 over the Czech Republic (Central Europe). We state that the RMN might have detected TGE over the Czech Republic.