Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Vet Parasitol ; 285: 109219, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32889401

RESUMO

Species of the Bromeliaceae are known for their pharmacological actions, including anthelmintic effects. The aim of this study was to investigate the in vitro anthelmintic activity of extracts and fractions of BRS Boyrá pineapple leaf against the eggs and infective larvae of gastrointestinal nematodes (Trichostrongylidae) of goats and to identify the compounds involved in this activity. Crude methanol, hexane, dichloromethane, ethyl acetate and residual hydromethanol extracts were investigated by quantitative analysis of phenolic and flavonoid contents, antioxidant activity, anthelmintic activity against gastrointestinal nematodes of goats. The extracts were submitted to chromatographic methods for substance isolation and spectrometric techniques to identify their structures. The anthelmintic activity was performed by in vitro assays with eggs and larvae of nematodes obtained from naturally infected donor goats. All extracts contained phenolic (2.22-14.12 g of gallic acid equivalent per 100 g of dry extract) and flavonoid compounds (0.13-1.45 g of quercetin equivalent per 100 g of dry extract). Bio-guided fractionation of the BRS Boyrá pineapple leaves showed high antioxidant activity (EC50 for DPPH of 2.16-21.38 mg mL-1 and inhibition of co-oxidation of ß-carotene of 36.40-74.86%) and anthelmintic activity (15.69-100% inhibition of egg hatching). The ethyl acetate extract exhibited greatest activity in all assays. Through chromatographic column analysis it was possible to isolate three substances: ß-sitosterol and stigmasterol mixture in dichloromethane and hexane extracts, identified by NMR and p-coumaric acid in the ethyl acetate extract, identified by HPLC-DAD. The isolated p-coumaric acid exhibited high ovicidal effect against goat gastrointestinal nematodes (IC50: 0.12 mg mL-1) and can be considered the active substance of the ethyl acetate extract. This study revealed for the first time that the pineapple BRS Boyrá possesses inhibitory activity against gastrointestinal nematodes (Haemonchus spp., Oesophagostomum spp. and Trichostrongylus spp.), and that p-coumaric acid is an important bioactive.


Assuntos
Ananas/química , Anti-Helmínticos/química , Anti-Helmínticos/farmacologia , Nematoides/efeitos dos fármacos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Animais , Ácidos Cumáricos , Cabras , Larva/efeitos dos fármacos , Infecções por Nematoides/parasitologia , Óvulo/efeitos dos fármacos , Propionatos/isolamento & purificação , Propionatos/farmacologia
2.
Rev Bras Parasitol Vet ; 29(2): e019819, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32609242

RESUMO

We investigated the in vitro acaricide activity of the methanolic extract (ME) and alkaloid-rich fraction (AF) of Prosopis juliflora on Rhipicephalus microplus and correlated this effect with acetylcholinesterase (AChE) inhibition. The acaricide activity was evaluated using adult and larval immersion tests. Also, we studied the possible interaction mechanism of the major alkaloids present in this fraction via molecular docking at the active site of R. microplus AChE1 (RmAChE1). Higher reproductive inhibitory activity of the AF was recorded, with effective concentration (EC50) four times lower than that of the ME (31.6 versus 121 mg/mL). The AF caused mortality of tick larvae, with lethal concentration 50% (LC50) of 13.8 mg/mL. Both ME and AF were seen to have anticholinesterase activity on AChE of R. microplus larvae, while AF was more active with half-maximal inhibitory concentration (IC50) of 0.041 mg/mL. The LC-MS/MS analyses on the AF led to identification of three alkaloids: prosopine (1), juliprosinine (2) and juliprosopine (3). The molecular docking studies revealed that these alkaloids had interactions at the active site of the RmAChE1, mainly relating to hydrogen bonds and cation-pi interactions. We concluded that the alkaloids of P. juliflora showed acaricide activity on R. microplus and acted through an anticholinesterase mechanism.


Assuntos
Alcaloides , Colinesterases , Extratos Vegetais , Prosopis , Rhipicephalus , Acaricidas/farmacologia , Alcaloides/farmacologia , Animais , Colinesterases/metabolismo , Cromatografia Líquida , Ativação Enzimática/efeitos dos fármacos , Larva , Simulação de Acoplamento Molecular , Extratos Vegetais/farmacologia , Prosopis/química , Rhipicephalus/efeitos dos fármacos , Rhipicephalus/enzimologia , Espectrometria de Massas em Tandem
3.
Parasitology ; 145(14): 1884-1889, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29781423

RESUMO

This study assessed the anthelmintic activity of plant-derived compounds against gastrointestinal nematodes of goats using the egg hatch and larval motility assays. The compounds tested were saponins (digitonin and aescin) and their respective sapogenins (aglycones), hecogenin acetate and flavonoids (catechin, hesperidin, isocordoin and a mixture of isocordoin and cordoin). Additionally, cytotoxicity of active substances was analysed on Vero cell through 3-4,5-dimethylthiazol-2-yl,2,5diphenyltetrazolium bromide (MTT) and propidium iodide (PI) tests. Significant reduction on the egg hatching (P 90%). Nevertheless, higher cytotoxicity was observed in the MTT assay, with IC50 of 0.20 mg mL-1 (aescin) and 0.0074 mg mL-1 (digitonin). Aescin and digitonin have a pronounced in vitro anthelmintic effect and the glycone portion of these saponins plays an important role in this activity.


Assuntos
Antinematódeos/farmacologia , Flavonoides/farmacologia , Cabras/parasitologia , Nematoides/efeitos dos fármacos , Oócitos/efeitos dos fármacos , Saponinas/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Digitonina/farmacologia , Trato Gastrointestinal/parasitologia , Concentração Inibidora 50 , Larva/efeitos dos fármacos , Compostos de Espiro/farmacologia , Esteroides/farmacologia , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA