Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
IEEE Trans Pattern Anal Mach Intell ; 46(7): 4763-4779, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38265905

RESUMO

Meta-learning empowers learning systems with the ability to acquire knowledge from multiple tasks, enabling faster adaptation and generalization to new tasks. This review provides a comprehensive technical overview of meta-learning, emphasizing its importance in real-world applications where data may be scarce or expensive to obtain. The article covers the state-of-the-art meta-learning approaches and explores the relationship between meta-learning and multi-task learning, transfer learning, domain adaptation and generalization, self-supervised learning, personalized federated learning, and continual learning. By highlighting the synergies between these topics and the field of meta-learning, the article demonstrates how advancements in one area can benefit the field as a whole, while avoiding unnecessary duplication of efforts. Additionally, the article delves into advanced meta-learning topics such as learning from complex multi-modal task distributions, unsupervised meta-learning, learning to efficiently adapt to data distribution shifts, and continual meta-learning. Lastly, the article highlights open problems and challenges for future research in the field. By synthesizing the latest research developments, this article provides a thorough understanding of meta-learning and its potential impact on various machine learning applications. We believe that this technical overview will contribute to the advancement of meta-learning and its practical implications in addressing real-world problems.

2.
Healthcare (Basel) ; 11(17)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37685422

RESUMO

The emergence of the COVID-19 pandemic in Wuhan in 2019 led to the discovery of a novel coronavirus. The World Health Organization (WHO) designated it as a global pandemic on 11 March 2020 due to its rapid and widespread transmission. Its impact has had profound implications, particularly in the realm of public health. Extensive scientific endeavors have been directed towards devising effective treatment strategies and vaccines. Within the healthcare and medical imaging domain, the application of artificial intelligence (AI) has brought significant advantages. This study delves into peer-reviewed research articles spanning the years 2020 to 2022, focusing on AI-driven methodologies for the analysis and screening of COVID-19 through chest CT scan data. We assess the efficacy of deep learning algorithms in facilitating decision making processes. Our exploration encompasses various facets, including data collection, systematic contributions, emerging techniques, and encountered challenges. However, the comparison of outcomes between 2020 and 2022 proves intricate due to shifts in dataset magnitudes over time. The initiatives aimed at developing AI-powered tools for the detection, localization, and segmentation of COVID-19 cases are primarily centered on educational and training contexts. We deliberate on their merits and constraints, particularly in the context of necessitating cross-population train/test models. Our analysis encompassed a review of 231 research publications, bolstered by a meta-analysis employing search keywords (COVID-19 OR Coronavirus) AND chest CT AND (deep learning OR artificial intelligence OR medical imaging) on both the PubMed Central Repository and Web of Science platforms.

3.
J Med Syst ; 47(1): 91, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37610455

RESUMO

Infertility has massively disrupted social and marital life, resulting in stressful emotional well-being. Early diagnosis is the utmost need for faster adaption to respond to these changes, which makes possible via AI tools. Our main objective is to comprehend the role of AI in fertility detection since we have primarily worked to find biomarkers and related risk factors associated with infertility. This paper aims to vividly analyse the role of AI as an effective method in screening, predicting for infertility and related risk factors. Three scientific repositories: PubMed, Web of Science, and Scopus, are used to gather relevant articles via technical terms: (human infertility OR human fertility) AND risk factors AND (machine learning OR artificial intelligence OR intelligent system). In this way, we systematically reviewed 42 articles and performed a meta-analysis. The significant findings and recommendations are discussed. These include the rising importance of data augmentation, feature extraction, explainability, and the need to revisit the meaning of an effective system for fertility analysis. Additionally, the paper outlines various mitigation actions that can be employed to tackle infertility and its related risk factors. These insights contribute to a better understanding of the role of AI in fertility analysis and the potential for improving reproductive health outcomes.


Assuntos
Inteligência Artificial , Infertilidade , Humanos , Fertilidade , Emoções , Aprendizado de Máquina
4.
Healthcare (Basel) ; 11(7)2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-37046855

RESUMO

Infertility is a social stigma for individuals, and male factors cause approximately 30% of infertility. Despite this, male infertility is underrecognized and underrepresented as a disease. According to the World Health Organization (WHO), changes in lifestyle and environmental factors are the prime reasons for the declining rate of male fertility. Artificial intelligence (AI)/machine learning (ML) models have become an effective solution for early fertility detection. Seven industry-standard ML models are used: support vector machine, random forest (RF), decision tree, logistic regression, naïve bayes, adaboost, and multi-layer perception to detect male fertility. Shapley additive explanations (SHAP) are vital tools that examine the feature's impact on each model's decision making. On these, we perform a comprehensive comparative study to identify good and poor classification models. While dealing with the all-above-mentioned models, the RF model achieves an optimal accuracy and area under curve (AUC) of 90.47% and 99.98%, respectively, by considering five-fold cross-validation (CV) with the balanced dataset. Furthermore, we provide the SHAP explanations of existing models that attain good and poor performance. The findings of this study show that decision making (based on ML models) with SHAP provides thorough explanations for detecting male fertility, as well as a reference for clinicians for further treatment planning.

5.
Healthcare (Basel) ; 11(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36766883

RESUMO

The presence of non-biomedical foreign objects (NBFO), such as coins, buttons and jewelry, and biomedical foreign objects (BFO), such as medical tubes and devices in chest X-rays (CXRs), make accurate interpretation difficult, as they do not indicate known biological abnormalities like excess fluids, tuberculosis (TB) or cysts. Such foreign objects need to be detected, localized, categorized as either NBFO or BFO, and removed from CXR or highlighted in CXR for effective abnormality analysis. Very specifically, NBFOs can adversely impact the process, as typical machine learning algorithms would consider these objects to be biological abnormalities producing false-positive cases. It holds true for BFOs in CXRs. This paper examines detailed discussions on numerous clinical reports in addition to computer-aided detection (CADe) with diagnosis (CADx) tools, where both shallow learning and deep learning algorithms are applied. Our discussion reflects the importance of accurately detecting, isolating, classifying, and either removing or highlighting NBFOs and BFOs in CXRs by taking 29 peer-reviewed research reports and articles into account.

6.
Int J Mach Learn Cybern ; : 1-12, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36817940

RESUMO

Machine learning is an effective and accurate technique to diagnose COVID-19 infections using image data, and chest X-Ray (CXR) is no exception. Considering privacy issues, machine learning scientists end up receiving less medical imaging data. Federated Learning (FL) is a privacy-preserving distributed machine learning paradigm that generates an unbiased global model that follows local model (from clients) without exposing their personal data. In the case of heterogeneous data among clients, vanilla or default FL mechanism still introduces an insecure method for updating models. Therefore, we proposed SecureFed-a secure aggregation method-which ensures fairness and robustness. In our experiments, we employed COVID-19 CXR dataset (of size 2100 positive cases) and compared it with the existing FL frameworks such as FedAvg, FedMGDA+, and FedRAD. In our comparison, we primarily considered robustness (accuracy) and fairness (consistency). As the SecureFed produced consistently better results, it is generic enough to be considered for multimodal data.

7.
Inf Sci (N Y) ; 592: 389-401, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-36532848

RESUMO

Chest X-ray (CXR) imaging is a low-cost, easy-to-use imaging alternative that can be used to diagnose/screen pulmonary abnormalities due to infectious diseaseX: Covid-19, Pneumonia and Tuberculosis (TB). Not limited to binary decisions (with respect to healthy cases) that are reported in the state-of-the-art literature, we also consider non-healthy CXR screening using a lightweight deep neural network (DNN) with a reduced number of epochs and parameters. On three diverse publicly accessible and fully categorized datasets, for non-healthy versus healthy CXR screening, the proposed DNN produced the following accuracies: 99.87% on Covid-19 versus healthy, 99.55% on Pneumonia versus healthy, and 99.76% on TB versus healthy datasets. On the other hand, when considering non-healthy CXR screening, we received the following accuracies: 98.89% on Covid-19 versus Pneumonia, 98.99% on Covid-19 versus TB, and 100% on Pneumonia versus TB. To further precisely analyze how well the proposed DNN worked, we considered well-known DNNs such as ResNet50, ResNet152V2, MobileNetV2, and InceptionV3. Our results are comparable with the current state-of-the-art, and as the proposed CNN is light, it could potentially be used for mass screening in resource-constraint regions.

8.
J Med Syst ; 46(11): 82, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36241922

RESUMO

There has been an explosive growth in research over the last decade exploring machine learning techniques for analyzing chest X-ray (CXR) images for screening cardiopulmonary abnormalities. In particular, we have observed a strong interest in screening for tuberculosis (TB). This interest has coincided with the spectacular advances in deep learning (DL) that is primarily based on convolutional neural networks (CNNs). These advances have resulted in significant research contributions in DL techniques for TB screening using CXR images. We review the research studies published over the last five years (2016-2021). We identify data collections, methodical contributions, and highlight promising methods and challenges. Further, we discuss and compare studies and identify those that offer extension beyond binary decisions for TB, such as region-of-interest localization. In total, we systematically review 54 peer-reviewed research articles and perform meta-analysis.


Assuntos
Aprendizado Profundo , Tuberculose , Humanos , Redes Neurais de Computação , Radiografia , Tuberculose/diagnóstico por imagem , Raios X
9.
PeerJ Comput Sci ; 8: e958, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35634112

RESUMO

For COVID-19, the need for robust, inexpensive, and accessible screening becomes critical. Even though symptoms present differently, cough is still taken as one of the primary symptoms in severe and non-severe infections alike. For mass screening in resource-constrained regions, artificial intelligence (AI)-guided tools have progressively contributed to detect/screen COVID-19 infections using cough sounds. Therefore, in this article, we review state-of-the-art works in both years 2020 and 2021 by considering AI-guided tools to analyze cough sound for COVID-19 screening primarily based on machine learning algorithms. In our study, we used PubMed central repository and Web of Science with key words: (Cough OR Cough Sounds OR Speech) AND (Machine learning OR Deep learning OR Artificial intelligence) AND (COVID-19 OR Coronavirus). For better meta-analysis, we screened for appropriate dataset (size and source), algorithmic factors (both shallow learning and deep learning models) and corresponding performance scores. Further, in order not to miss up-to-date experimental research-based articles, we also included articles outside of PubMed and Web of Science, but pre-print articles were strictly avoided as they are not peer-reviewed.

10.
Inf Process Manag ; 59(2): 102810, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35165495

RESUMO

Starting from December 2019, the novel COVID-19 threatens human lives and economies across the world. It was a matter of grave concern for the governments of all the countries as the deadly virus started expanding its paws over neighboring regions of infected areas. The spread got uncontrollable, thereby leaving no choice for the nations but to impose and observe nationwide lockdown. The lockdown further sorely hit many sectors, which in turn impacted the economy. Manufacturing, agriculture, and the service sector - the three pillars of the economy - have been adversely affected giving a major slow down to the economy belonging to every nation. Several schemes and policies were introduced by different state and central governments to absorb the impact of subsequent lockdowns on individuals. In this paper, we present a then and now analysis of the economy using a socioeconomic framework focusing on factors- unemployment, industrial production, import-export trade, equity markets, currency exchange rate, and gold and silver prices. For all these, we consider India as a case study because the Indian sub-continent has a wide landscape and rich cultural heritage presenting itself as a potential hub for economic activities. A thorough assessment has been made for the period January 2020- June 2020. The assessment will be beneficial to observe the long-term impact of any infectious disease outbreak such as COVID-19 locally and globally.

11.
J Healthc Eng ; 2022: 8302674, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35028124

RESUMO

The use of digital medical images is increasing with advanced computational power that has immensely contributed to developing more sophisticated machine learning techniques. Determination of age and gender of individuals was manually performed by forensic experts by their professional skills, which may take a few days to generate results. A fully automated system was developed that identifies the gender of humans and age based on digital images of teeth. Since teeth are a strong and unique part of the human body that exhibits least subject to risk in natural structure and remains unchanged for a longer duration, the process of identification of gender- and age-related information from human beings is systematically carried out by analyzing OPG (orthopantomogram) images. A total of 1142 digital X-ray images of teeth were obtained from dental colleges from the population of the middle-east part of Karnataka state in India. 80% of the digital images were considered for training purposes, and the remaining 20% of teeth images were for the testing cases. The proposed gender and age determination system finds its application widely in the forensic field to predict results quickly and accurately. The prediction system was carried out using Multiclass SVM (MSVM) classifier algorithm for age estimation and LIBSVM classifier for gender prediction, and 96% of accuracy was achieved from the system.


Assuntos
Dente , Humanos , Índia , Aprendizado de Máquina , Radiografia Panorâmica , Dente/diagnóstico por imagem , Raios X
12.
Neural Comput Appl ; 34(24): 21481-21501, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33903785

RESUMO

Emotion is an instinctive or intuitive feeling as distinguished from reasoning or knowledge. It varies over time, since it is a natural instinctive state of mind deriving from one's circumstances, mood, or relationships with others. Since emotions vary over time, it is important to understand and analyze them appropriately. Existing works have mostly focused well on recognizing basic emotions from human faces. However, the emotion recognition from cartoon images has not been extensively covered. Therefore, in this paper, we present an integrated Deep Neural Network (DNN) approach that deals with recognizing emotions from cartoon images. Since state-of-works do not have large amount of data, we collected a dataset of size 8 K from two cartoon characters: 'Tom' & 'Jerry' with four different emotions, namely happy, sad, angry, and surprise. The proposed integrated DNN approach, trained on a large dataset consisting of animations for both the characters (Tom and Jerry), correctly identifies the character, segments their face masks, and recognizes the consequent emotions with an accuracy score of 0.96. The approach utilizes Mask R-CNN for character detection and state-of-the-art deep learning models, namely ResNet-50, MobileNetV2, InceptionV3, and VGG 16 for emotion classification. In our study, to classify emotions, VGG 16 outperforms others with an accuracy of 96% and F1 score of 0.85. The proposed integrated DNN outperforms the state-of-the-art approaches.

13.
J Neurol ; 269(5): 2599-2609, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34674006

RESUMO

Gait abnormalities and cognitive dysfunction are common in patients with Parkinson's disease (PD) and get worse with disease progression. Recent evidence has suggested a strong relationship between gait abnormalities and cognitive dysfunction in PD patients and impaired cognitive control could be one of the causes for abnormal gait patterns. However, the pathophysiological mechanisms of cognitive dysfunction in PD patients with gait problems are unclear. Here, we collected scalp electroencephalography (EEG) signals during a 7-s interval timing task to investigate the cortical mechanisms of cognitive dysfunction in PD patients with (PDFOG +, n = 34) and without (PDFOG-, n = 37) freezing of gait, as well as control subjects (n = 37). Results showed that the PDFOG + group exhibited the lowest maximum response density at around 7 s compared to PDFOG- and control groups, and this response density peak correlated with gait abnormalities as measured by FOG scores. EEG data demonstrated that PDFOG + had decreased midfrontal delta-band power at the onset of the target cue, which was also correlated with maximum response density and FOG scores. In addition, our classifier performed better at discriminating PDFOG + from PDFOG- and controls with an area under the curve of 0.93 when midfrontal delta power was chosen as a feature. These findings suggest that abnormal midfrontal activity in PDFOG + is related to cognitive dysfunction and describe the mechanistic relationship between cognitive and gait functions in PDFOG + . Overall, these results could advance the development of novel biosignatures and brain stimulation approaches for PDFOG + .


Assuntos
Disfunção Cognitiva , Transtornos Neurológicos da Marcha , Doença de Parkinson , Disfunção Cognitiva/complicações , Eletroencefalografia , Marcha/fisiologia , Humanos
14.
Front Robot AI ; 8: 785075, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34957225
15.
Appl Intell (Dordr) ; 51(5): 2777-2789, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34764562

RESUMO

Since December 2019, the novel COVID-19's spread rate is exponential, and AI-driven tools are used to prevent further spreading [1]. They can help predict, screen, and diagnose COVID-19 positive cases. Within this scope, imaging with Computed Tomography (CT) scans and Chest X-rays (CXRs) are widely used in mass triage situations. In the literature, AI-driven tools are limited to one data type either CT scan or CXR to detect COVID-19 positive cases. Integrating multiple data types could possibly provide more information in detecting anomaly patterns due to COVID-19. Therefore, in this paper, we engineered a Convolutional Neural Network (CNN) -tailored Deep Neural Network (DNN) that can collectively train/test both CT scans and CXRs. In our experiments, we achieved an overall accuracy of 96.28% (AUC = 0.9808 and false negative rate = 0.0208). Further, major existing DNNs provided coherent results while integrating CT scans and CXRs to detect COVID-19 positive cases.

16.
J Med Syst ; 45(7): 71, 2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34081193

RESUMO

In this paper, considering year 2020 and Covid-19, we analyze medical imaging tools and their performance scores in accordance with the dataset size and their complexity. For this, we mainly consider AI-driven tools that employ two different types of image data, namely chest Computed Tomography (CT) and X-ray. We elaborate on their strengths and weaknesses by taking the following important factors into account: i) dataset size; ii) model fitting criteria (over-fitting and under-fitting); iii) transfer learning in the deep learning era; and iv) data augmentation. Medical imaging tools do not explicitly analyze model fitting. Also, using transfer learning, with fewer data, one could possibly build Covid-19 deep learning model but they are limited to education and training. We observe that, in both image modalities, neither the dataset size nor does data augmentation work well for Covid-19 screening purposes because a large dataset does not guarantee all possible Covid-19 manifestations and data augmentation does not create new Covid-19 cases.


Assuntos
Big Data , COVID-19/diagnóstico por imagem , Radiografia Torácica , Tomografia Computadorizada por Raios X , Aprendizado Profundo , Humanos
17.
Phys Eng Sci Med ; 44(3): 703-712, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34047928

RESUMO

Automated assessment and segmentation of Brain MRI images facilitate towards detection of neurological diseases and disorders. In this paper, we propose an improved U-Net with VGG-16 to segment Brain MRI images and identify region-of-interest (tumor cells). We compare results of improved U-Net with a custom-designed U-Net architecture by analyzing the TCGA-LGG dataset (3929 images) from the TCI archive, and achieve pixel accuracies of 0.994 and 0.9975 from basic U-Net and improved U-Net architectures, respectively. Our results outperformed common CNN-based state-of-the-art works.


Assuntos
Neoplasias Encefálicas , Processamento de Imagem Assistida por Computador , Neoplasias Encefálicas/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Redes Neurais de Computação , Neuroimagem
18.
J Med Syst ; 45(4): 51, 2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33687570

RESUMO

Imaging techniques widely use Computed Tomography (CT) scans for various purposes, such as screening, diagnosis, and decision-making. Of all, it holds true for bone injuries. To build fully automated Computer-Aided Detection (CADe) and Diagnosis (CADx) tools and techniques, it requires fairly large amount of data (with gold standard). Therefore, in this paper, since state-of-the-art works relied on small dataset, we introduced a CT image dataset on limbs that is designed to understand bone injuries. Our dataset is a collection of 24 patient-specific CT cases having fractures at upper and lower limbs. From upper limbs, 8 cases were collected from bones in/around the shoulder (left and right). Similarly, from lower limbs, 16 cases were collected from knees (left and right). Altogether, 5684 CT images (upper limbs: 2057 and lower limbs: 3627) were collected. Each patient-specific CT case is composed of maximum 257 scans/slices in average. Of all, clinically approved annotations were made on every 10th slices, resulting in 1787 images. Importantly, no fractured limbs were missed in our annotation. Besides, to avoid privacy and confidential issues, patient-related information were deleted. The proposed dataset could be a promising resource for the medical imaging research community, where imaging techniques are employed for various purposes. To the best of our knowledge, this is the first time 5K+ CT images on fractured limbs are provided for research and educational purposes.


Assuntos
Fraturas Ósseas , Tomografia Computadorizada por Raios X , Fraturas Ósseas/diagnóstico por imagem , Humanos , Radiografia
19.
Int J Biomed Imaging ; 2021: 6664569, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33552152

RESUMO

One of the major shortcomings of Hopfield neural network (HNN) is that the network may not always converge to a fixed point. HNN, predominantly, is limited to local optimization during training to achieve network stability. In this paper, the convergence problem is addressed using two approaches: (a) by sequencing the activation of a continuous modified HNN (MHNN) based on the geometric correlation of features within various image hyperplanes via pixel gradient vectors and (b) by regulating geometric pixel gradient vectors. These are achieved by regularizing proposed MHNNs under cohomology, which enables them to act as an unconventional filter for pixel spectral sequences. It shifts the focus to both local and global optimizations in order to strengthen feature correlations within each image subspace. As a result, it enhances edges, information content, contrast, and resolution. The proposed algorithm was tested on fifteen different medical images, where evaluations were made based on entropy, visual information fidelity (VIF), weighted peak signal-to-noise ratio (WPSNR), contrast, and homogeneity. Our results confirmed superiority as compared to four existing benchmark enhancement methods.

20.
Cognit Comput ; : 1-14, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33564340

RESUMO

Among radiological imaging data, Chest X-rays (CXRs) are of great use in observing COVID-19 manifestations. For mass screening, using CXRs, a computationally efficient AI-driven tool is the must to detect COVID-19-positive cases from non-COVID ones. For this purpose, we proposed a light-weight Convolutional Neural Network (CNN)-tailored shallow architecture that can automatically detect COVID-19-positive cases using CXRs, with no false negatives. The shallow CNN-tailored architecture was designed with fewer parameters as compared to other deep learning models. The shallow CNN-tailored architecture was validated using 321 COVID-19-positive CXRs. In addition to COVID-19-positive cases, another set of non-COVID-19 5856 cases (publicly available, source: Kaggle) was taken into account, consisting of normal, viral, and bacterial pneumonia cases. In our experimental tests, to avoid possible bias, 5-fold cross-validation was followed, and both balanced and imbalanced datasets were used. The proposed model achieved the highest possible accuracy of 99.69%, sensitivity of 1.0, where AUC was 0.9995. Furthermore, the reported false positive rate was only 0.0015 for 5856 COVID-19-negative cases. Our results stated that the proposed CNN could possibly be used for mass screening. Using the exact same set of CXR collection, the current results were better than other deep learning models and major state-of-the-art works.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA