Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Dalton Trans ; 50(38): 13561-13571, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34514486

RESUMO

Theoretical methods of the SOC-NEVPT2 type combined with a molecular fragmentation scheme have been proven to be a powerful tool that allows explaining the luminescence sensitization mechanism in Ln(III) coordination compounds through the antenna effect. In this work, we have used this strategy to predict luminescence in a family of compounds of the Eu(R-phen)(BTA)3 type where R-phen = 5-methyl-1,10-phenanthroline (Me-phen), 5-nitro-1,10-71 phenanthroline (Nitro-phen), 4,5-diazafluoren-9-one (One-phen), or 5,6-epoxy-5,6-dihydro-1,10-72 phenanthroline (Epoxy-phen); and BTA = fluorinated ß-diketone. Possible sensitization pathways were elucidated from the energy difference between the ligand-centered triplet (3T) states and the emissive excited states of the Eu(III) fragments (Latva rules). Calculations show that the most probable mechanism occurs through the triplet state of the BTA which should be enriched by several parallel energy transfer pathways from R-phen substituents. The complexes were synthesized and structurally characterized by X-ray crystallography and various other physicochemical and spectroscopic methods to realize their optical properties and energy transfer pathways from dual antennae. Experimental results were in good agreement with the theoretical predictions, which reinforces the predictive power of the used theoretical methodology.

2.
Elife ; 62017 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-28362260

RESUMO

The connection between gene loss and the functional adaptation of retained proteins is still poorly understood. We apply phylogenomics and metabolic modeling to detect bacterial species that are evolving by gene loss, with the finding that Actinomycetaceae genomes from human cavities are undergoing sizable reductions, including loss of L-histidine and L-tryptophan biosynthesis. We observe that the dual-substrate phosphoribosyl isomerase A or priA gene, at which these pathways converge, appears to coevolve with the occurrence of trp and his genes. Characterization of a dozen PriA homologs shows that these enzymes adapt from bifunctionality in the largest genomes, to a monofunctional, yet not necessarily specialized, inefficient form in genomes undergoing reduction. These functional changes are accomplished via mutations, which result from relaxation of purifying selection, in residues structurally mapped after sequence and X-ray structural analyses. Our results show how gene loss can drive the evolution of substrate specificity from retained enzymes.


Assuntos
Actinomycetaceae/enzimologia , Actinomycetaceae/metabolismo , Adaptação Biológica , Aldose-Cetose Isomerases/genética , Aldose-Cetose Isomerases/metabolismo , Deleção de Genes , Actinomycetaceae/genética , Evolução Molecular , Mutação , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA