RESUMO
Water recycling and reuse are cornerstones of water management, which can be compromised by the presence of pollutants. Among these, pharmaceuticals can overcome standard water treatments and require sophisticated approaches to remove them. Sorption is an economically viable alternative limited by the need for sorbents with a sorption coefficient (Kd) higher than 500 L/kg. The cross-linking of dextrin (Dx) with divinyl sulfone (DVS) in the presence of 1 mmol or 5 mmol of ibuprofen (IBU) yields the insoluble polymers pDx1 and pDx5 with improved affinity for IBU and high selectivity towards erythromycin (ERY) and ERY Kd higher than 4 × 103 L/kg, when tested against a cocktail of six drugs. Characterization of the polymers shows that both pDx1 and pDx5 have similar properties, fast sorption kinetics, and ERY Kd of 13.3 × 103 for pDx1 and 6.4 × 103 for pDx5, representing 26.6 and 12.0 times the 500 L/kg threshold. The fact that new affinities and improvements in Kd can be achieved by cross-linking Dx in the presence of other molecules that promote pre-organization expands the applications of DVS cross-linked polysaccharides as sustainable, scalable, and environmentally friendly sorbents with a potential application in wastewater treatment plants (WTPs).
RESUMO
Water use has been increasing globally by 1% per year, and recycling and re-use are critical issues compromised by the presence of pollutants. In this context, the design of novel materials and/or procedures for the large scale-removal of pollutants must be economically and environmentally feasible in order to be considered as part of the solution by emerging economies. We demonstrate that the cross-linking of biodegradable polysaccharides such as starch, dextrin, or dextrin and ß-cyclodextrin with divinyl sulfone is an innovative strategy for synthesizing insoluble and eco-friendly sorbent polymers, including pSt, pDx and pCD-Dx. The evaluation of these polymers' ability to remove ciprofloxacin (CIP), a prime example of antibiotic pollution, revealed that pSt, with a Kd of 1469 L/kg and a removal rate higher than 92%, is a favorable material. Its sorption is pH-dependent and enhanced at a mildly alkaline pH, allowing for the desorption (i.e., cleaning) and reuse of pSt through an environmentally friendly treatment with 20 mM AcONa pH 4.6. The facts that pSt (i) shows a high affinity for CIP even at high NaCl concentrations, (ii) can be obtained from affordable starting materials, and (iii) is synthesized and regenerated through organic, solvent-free procedures make pSt a novel sustainable material for inland water and seawater remediation, especially in less developed countries, due to its simplicity and low cost.
RESUMO
Trans-sialidases (TS) are important constitutive macromolecules of the secretome present on the surface of Trypanosoma cruzi (T. cruzi) that play a central role as a virulence factor in Chagas disease. These enzymes have been related to infectivity, escape from immune surveillance and pathogenesis exhibited by this protozoan parasite. In this work, atomic force microscopy (AFM)-based single molecule-force spectroscopy is implemented as a suitable technique for the detection and location of functional TS on the surface of extracellular vesicles (EVs) released by tissue-culture cell-derived trypomastigotes (Ex-TcT). For that purpose, AFM cantilevers with functionalized tips bearing the anti-TS monoclonal antibody mAb 39 as a sense biomolecule are engineered using a covalent chemical ligation based on vinyl sulfonate click chemistry; a reliable, simple and efficient methodology for the molecular recognition of TS using the antibody-antigen interaction. Measurements of the breakdown forces between anti-TS mAb 39 antibodies and EVs performed to elucidate adhesion and forces involved in the recognition events demonstrate that EVs isolated from tissue-culture cell-derived trypomastigotes of T. cruzi are enriched in TS. Additionally, a mapping of the TS binding sites with submicrometer-scale resolution is provided. This work represents the first AFM-based molecular recognition study of Ex-TcT using an antibody-tethered AFM probe.
Assuntos
Vesículas Extracelulares , Parasitos , Trypanosoma cruzi , Animais , Vesículas Extracelulares/metabolismo , Glicoproteínas , Microscopia de Força Atômica , Neuraminidase/metabolismo , Parasitos/metabolismo , Trypanosoma cruzi/metabolismoRESUMO
Bisphosphonates (BPs) are bone-binding molecules that provide targeting capabilities to bone cancer cells when conjugated with drug-carrying polymers. This work reports the design, synthesis, and biological evaluation of polyethyleneimine-BP-cyclodextrin (PEI-BP-CD) ternary conjugates with supramolecular capabilities for the loading of antineoplastic drugs. A straightforward, modular, and versatile strategy based on the click aza-Michael addition reaction of vinyl sulfones (VSs) allows the grafting of BPs targeting ligands and ßCD carrier appendages to the PEI polymeric scaffold. The in vitro evaluation (cytotoxicity, cellular uptake, internalization routes, and subcellular distribution) for the ternary conjugates and their doxorubicin inclusion complexes in different bone-related cancer cell lines (MC3T3-E1 osteoblasts, MG-63 sarcoma cells, and MDA-MB-231 breast cancer cells) confirmed specificity, mitochondrial targeting, and overall capability to mediate a targeted drug transport to those cells. The in vivo evaluation using xenografts of MG-63 and MDA-MB-231 cells on mice also confirmed the targeting of the conjugates.
Assuntos
Antineoplásicos/uso terapêutico , Ciclodextrinas/química , Difosfonatos/química , Portadores de Fármacos/química , Neoplasias/tratamento farmacológico , Polietilenoimina/análogos & derivados , Animais , Linhagem Celular Tumoral , Ciclodextrinas/síntese química , Ciclodextrinas/toxicidade , Difosfonatos/síntese química , Difosfonatos/toxicidade , Doxorrubicina/uso terapêutico , Portadores de Fármacos/síntese química , Portadores de Fármacos/toxicidade , Desenho de Fármacos , Feminino , Humanos , Camundongos , Polietilenoimina/síntese química , Polietilenoimina/toxicidade , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Magnetite nanoparticles (MNPs) coated by branched poly (ethylene-imine) (PEI) were synthesized in a one-pot. Three molecular weights of PEI were tested, namely, 1.8 kDa (sample MNP-1), 10 kDa (sample MNP-2), and 25 kDa (sample MNP-3). The MNP-1 particles were further functionalized with folic acid (FA) (sample MNP-4). The four types of particles were found to behave magnetically as superparamagnetic, with MNP-1 showing the highest magnetization saturation. The particles were evaluated as possible hyperthermia agents by subjecting them to magnetic fields of 12 kA/m strength and frequencies ranging between 115 and 175 kHz. MNP-1 released the maximum heating power, reaching 330 W/g at the highest frequency, in the high side of reported values for spherical MNPs. In vitro cell viability assays of MNP-1 and MNP-4 against three cell lines expressing different levels of FA receptors (FR), namely, HEK (low expression), and HeLa (high expression), and HepG2 (high expression), demonstrated that they are not cytotoxic. When the cells were incubated in the presence of a 175 kHz magnetic field, a significant reduction in cell viability and clone formation was obtained for the high expressing FR cells incubated with MNP-4, suggesting that MNP-4 particles are good candidates for magnetic field hyperthermia and active targeting.
RESUMO
The use of the specific binding properties of monoclonal antibody fragments such as single-chain variable fragments (ScFv) for the selective delivery of antitumor therapeutics for cancer cells is attractive due to their smaller size, low immunogenicity, and low-cost production. Although covalent strategies for the preparation of such ScFv-based therapeutic conjugates are prevalent, this approach is not straightforward, as it requires prior chemical activation and/or modification of both the ScFv and the therapeutics for the application of robust chemistries. A non-covalent alternative based on ScFv fused to maltose-binding protein (MBP) acting as a binding adapter is proposed for active targeted delivery. MBP-ScFv proves to be a valuable modular platform to synergistically bind maltose-derivatized therapeutic cargos through the MBP, while preserving the targeting competences provided by the ScFv. The methodology has been tested by using a mutated maltose-binding protein (MBP I334W) with an enhanced affinity toward maltose and an ScFv coding sequence toward the human epidermal growth factor receptor 2 (HER2). Non-covalent binding complexes of the resulting MBP-ScFv fusion protein with diverse maltosylated therapeutic cargos (a near-infrared dye, a maltosylated supramolecular ß-cyclodextrin container for doxorubicin, and non-viral polyplex gene vector) were easily prepared and characterized. In vitro and in vivo assays using cell lines that express or not the HER2 epitope, and mice xenografts of HER2 expressing cells demonstrated the capability and versatility of MBP-ScFv for diagnosis, imaging, and drug and plasmid active targeted tumor delivery. Remarkably, the modularity of the MBP-ScFv platform allows the flexible interchange of both the cargos and the coding sequence for the ScFv, allowing ad hoc solutions in targeting delivery without any further optimization since the MBP acts as a pivotal element.
Assuntos
Anticorpos de Cadeia Única , Animais , Anticorpos Monoclonais , Doxorrubicina , Maltose , Proteínas Ligantes de Maltose/genética , Camundongos , Anticorpos de Cadeia Única/genéticaRESUMO
Directed evolution has revolutionized protein engineering. Still, enzyme optimization by random library screening remains sluggish, in large part due to futile probing of mutations that are catalytically neutral and/or impair stability and folding. FuncLib is a novel approach which uses phylogenetic analysis and Rosetta design to rank enzyme variants with multiple mutations, on the basis of predicted stability. Here, we use it to target the active site region of a minimalist-designed, de novo Kemp eliminase. The similarity between the Michaelis complex and transition state for the enzymatic reaction makes this system particularly challenging to optimize. Yet, experimental screening of a small number of active-site variants at the top of the predicted stability ranking leads to catalytic efficiencies and turnover numbers (â¼2 × 104 M-1 s-1 and â¼102 s-1) for this anthropogenic reaction that compare favorably to those of modern natural enzymes. This result illustrates the promise of FuncLib as a powerful tool with which to speed up directed evolution, even on scaffolds that were not originally evolved for those functions, by guiding screening to regions of the sequence space that encode stable and catalytically diverse enzymes. Empirical valence bond calculations reproduce the experimental activation energies for the optimized eliminases to within â¼2 kcal mol-1 and indicate that the enhanced activity is linked to better geometric preorganization of the active site. This raises the possibility of further enhancing the stability-guidance of FuncLib by computational predictions of catalytic activity, as a generalized approach for computational enzyme design.
RESUMO
A microfluidic paper-based analytical device integrating carbon dot (CDs) is fabricated and used for a fluorometric off-on assay of biothiols. Vinyl sulfone (VS) click immobilization of carbon dots (CDs) on paper was accomplished by a one-pot simplified protocol that uses divinyl sulfone (DVS) as a homobifunctional reagent. This reagent mediated both the click oxa-Michael addition to the hydroxyl groups of cellulose and ulterior covalent grafting of the resulting VS paper to NH2-functionalized CDs by means of click aza-Michael addition. The resulting cellulose nanocomposite was used to engineer an inexpensive and robust microfluidic paper-based analytical device (µPAD) that is used for a reaction-based off-on fluorometric assay of biothiols (GSH, Cys, and Hcy). The intrinsic blue fluorescence of CDs (with excitation/emission maxima at 365/450 nm) is turned off via the heavy atom effect of an introduced iodo group. Fluorescence is turned on again due to the displacement of iodine by reaction with a biothiol. The increase in fluorescence is related to the concentration over a wide range (1 to 200 µM for GSH and 5-200 µM for Cys and Hcy, respectively), and the assay exhibits a low detection limit (0.3 µM for GSH and Cys and 0.4 µM for Hcy). The method allows for rapid screening and can also be used in combination with a digital camera readout. Graphical abstract Schematic representation of a µPAD based on click immobilized carbon dots and used for a reaction-based fluorometric off-on assay of biothiols. The intrinsic blue fluorescence of carbon dots is turned off via the heavy atom effect of an introduced iodo group and turned on by the displacement of this atom by reaction with a biothiol.
Assuntos
Cisteína/urina , Glutationa/urina , Homocisteína/urina , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/métodos , Pontos Quânticos/química , Carbono/química , Química Click , Humanos , Técnicas Analíticas Microfluídicas/instrumentação , Papel , Espectrometria de Fluorescência/métodos , Sulfonas/químicaRESUMO
Chromophore-appended cyclodextrins combine the supramolecular loading capabilities of cyclodextrins (CDs) with the optical properties of the affixed chromophores. Among fluorescent materials, carbon dots (CNDs) are attractive and the feasibility of CND-appended CDs as sensors has been demonstrated by different authors. However, CNDs are intrinsically heterogeneous materials and their ulterior functionalization yields hybrid composites that are not well defined in terms of structure and composition. Inspired by the fluorescence properties of 5-oxo-1,2,3,5-tetrahydroimidazo[1,2-a]pyridine-7-carboxylic acid (IPCA), the most paradigmatic of the molecular fluorophores detected in CNDs, herein we report two highly efficient synthetic chemical strategies for the preparation of IPCA-appended CDs that behave as CND-based CD "turn off-on" biosensors suitable for the analysis of cholesterol and ß-galactosidase activity. We have deconstructed the CND-CD systems to demonstrate that (i) the role of CNDs is limited to acting as a support for the molecular fluorophores produced during their synthesis and (ii) the molecular fluorophores suffice for the determination of the enzymatic activity based on the quenching by p-nitrophenol as a sacrificial quencher.
Assuntos
Técnicas Biossensoriais , Carbono/química , Ciclodextrinas/química , Pontos Quânticos , Colesterol/sangue , Fluorescência , Corantes Fluorescentes/química , Humanos , Nitrofenóis/química , beta-Galactosidase/análiseRESUMO
Activated carbon nanodots functionalized with acid anhydride groups (AA-CNDs) are prepared by one-pot water-free green thermolysis of citric acid. As a proof of concept of their capabilities as appealing and versatile platforms for accessing engineering nanoconstructs, the as-prepared AA-CNDs have been reacted to yield clickable CNDs. Their click bioconjugation with relevant recognizable complementary clickable sugars has led to multivalent CND-based glyconanoparticles that are non-toxic and biorecognizable. The accessibility and intrinsic reactivity of AA-CNDs expand the current toolbox of covalent surface grafting methodologies and provide a wide range of potential applications for engineering (bio)nanoconstructs.
Assuntos
Anidridos/química , Carbono/química , Nanoestruturas/química , Animais , Linhagem Celular , Ácido Cítrico/química , Eritrócitos/citologia , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Hemólise/efeitos dos fármacos , Humanos , Camundongos , Microscopia Confocal , Nanoestruturas/toxicidade , PiróliseRESUMO
We report the application of the click Michael-type addition reaction to vinyl sulfone or vinyl sulfonate groups in the synthesis of rotaxanes through the threading-and-capping method. This methodology has proven to be efficient and versatile as it allowed the preparation of rotaxanes using template approaches based on different noncovalent interactions (i.e., donor-acceptor π-π interactions or hydrogen bonding) in yields of generally 60-80 % and up to 91 % aided by the mild conditions required (room temperature or 0 °C and a mild base such as Et3 N or 4-(N,N-dimethylamino)pyridine (DMAP)). Furthermore, the use of vinyl sulfonate moieties, which are suitable motifs for coupling-and-decoupling (CAD) chemistry, implies another advantage because it allows the controlled chemical disassembly of the rotaxanes into their components through nucleophilic substitution of the sulfonates resulting from the capping step with a thiol under mild conditions (Cs2 CO3 and room temperature).
RESUMO
Saponins are potential wide-spectrum antitumor drugs, and copper(I) catalyzed azide-alkyne 1,3-dipolar cycloaddition is a suitable approach to synthesizing saponin-like compounds by regioselective glycosylation of the C2/C3 hydroxyl and C28 carboxylic groups of triterpene aglycones maslinic acid (MA) and oleanolic acid (OA). Biological studies on the T-84 human colon carcinoma cell line support the role of the hydroxyl groups at C2/C3, the influence of the aglycone, and the bulky nature of the substituents in C28. OA bearing a α-d-mannose moiety at C28 (compound 18) focused our interest because the estimated inhibitory concentration 50 was similar to that reported for ginsenoside Rh2 against colon cancer cells and it inhibits the G1-S phase transition affecting the cell viability and apoptosis. Considering that triterpenoids from natural sources have been identified as inhibitors of nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB) signaling, docking studies were conducted to evaluate whether NF-κB may be a potential target. Results are consistent with the biological study and predict a similar binding mode of MA and compound 18 to the p52 subunit from NF-κB but not for OA. The fact that the binding site is shared by the NF-κB inhibitor 6,6-dimethyl-2-(phenylimino)-6,7-dihydrobenzo[d][1,3]oxathiol-4(5H)-one supports the result and points to NF-κB as a potential target of both MA and compound 18.
RESUMO
Polymer-based nanotheranostics are appealing tools for cancer treatment and diagnosis in the fast-growing field of nanomedicine. A straightforward preparation of novel engineered PEI-based nanotheranostics incorporating NIR fluorescence heptamethine cyanine dyes (NIRF-HC) to enable them with tumor targeted gene delivery capabilities is reported. Branched PEI-2 kDa (b2kPEI) is conjugated with IR-780 and IR-783 dyes by both covalent and noncovalent simple preparative methodologies varying their stoichiometry ratio. The as-prepared set of PEI-NIR-HC nanocarriers are assayed in vitro and in vivo to evaluate their gene transfection efficiency, cellular uptake, cytotoxicity, internalization and trafficking mechanisms, subcellular distribution, and tumor specific gene delivery. The results show the validity of the approach particularly for one of the covalent IR783-b2kPEI conjugates that exhibit an enhanced tumor uptake, probably mediated by organic anion transporting peptides, and favorable intracellular transport to the nucleus. The compound behaves as an efficient nanotheranostic transfection agent in NSG mice bearing melanoma G361 xenographs with concomitant imaging signal and gene concentration in the targeted tumor. By this way, advanced nanotheranostics with multifunctional capabilities (gene delivery, tumor-specific targeting, and NIR fluorescence imaging) are generated in which the NIRF-HC dye component accounts for simultaneous targeting and diagnostics, avoiding additional incorporation of additional tumor-specific targeting bioligands.
Assuntos
Carbocianinas/administração & dosagem , Nanomedicina , Polietilenoimina/química , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Nanomedicina Teranóstica , Animais , Linhagem Celular , Fluorescência , Técnicas de Transferência de Genes , CamundongosRESUMO
Protein engineering studies often suggest the emergence of completely new enzyme functionalities to be highly improbable. However, enzymes likely catalysed many different reactions already in the last universal common ancestor. Mechanisms for the emergence of completely new active sites must therefore either plausibly exist or at least have existed at the primordial protein stage. Here, we use resurrected Precambrian proteins as scaffolds for protein engineering and demonstrate that a new active site can be generated through a single hydrophobic-to-ionizable amino acid replacement that generates a partially buried group with perturbed physico-chemical properties. We provide experimental and computational evidence that conformational flexibility can assist the emergence and subsequent evolution of new active sites by improving substrate and transition-state binding, through the sampling of many potentially productive conformations. Our results suggest a mechanism for the emergence of primordial enzymes and highlight the potential of ancestral reconstruction as a tool for protein engineering.
Assuntos
Domínio Catalítico , Evolução Molecular , Engenharia de Proteínas , beta-Lactamases/metabolismo , Escherichia coli , Simulação de Dinâmica MolecularRESUMO
BACKGROUND: Around 20%-30% of breast cancers overexpress the proto-oncogene human epidermal growth receptor 2 (HER2), and they are characterized by being very invasive. Therefore, many current studies are focused on testing new therapies against tumors that overexpress this receptor. In particular, there exists major interest in new strategies to fight breast cancer resistant to trastuzumab (Tmab), a humanized antibody that binds specifically to HER2 interfering with its mitogenic signaling. Our team has previously developed immunostimulating complexes (ISCOMs) as nanocapsules functionalized with lipid vinyl sulfones, which can incorporate protein A and bind to G immunoglobulins that makes them very flexible nanocarriers. METHODS AND RESULTS: The aim of this in vitro study was to synthesize and evaluate a drug delivery system based on protein A-functionalized ISCOMs to target HER2-overexpressing cells. We describe the preparation of ISCOMs, the loading with the drugs doxorubicin and paclitaxel, the binding of ISCOMs to alkyl vinyl sulfone-protein A, the coupling of Tmab, and the evaluation in both HER2-overexpressing breast cancer cells (HCC1954) and non-overexpressing cells (MCF-7) by flow cytometry and fluorescence microscopy. Results show that the uptake is dependent on the level of overexpression of HER2, and the analysis of the cell viability reveals that targeted drugs are selective toward HCC1954, whereas MCF-7 cells remain unaffected. CONCLUSION: Protein A-functionalized ISCOMs are versatile carriers that can be coupled to antibodies that act as targeting agents to deliver drugs. When coupling to Tmab and loading with paclitaxel or doxorubicin, they become efficient vehicles for the selective delivery of the drug to Tmab-resistant HER2-overexpressing breast cancer cells. These nanoparticles may pave the way for the development of novel therapies for poor prognosis resistant patients.
Assuntos
Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , ISCOMs/química , Lipídeos/química , Receptor ErbB-2/metabolismo , Sulfonas/química , Trastuzumab/uso terapêutico , Antineoplásicos/farmacologia , Neoplasias da Mama/patologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Endocitose/efeitos dos fármacos , Feminino , Citometria de Fluxo , Humanos , Células MCF-7 , Nanopartículas/química , Nanopartículas/ultraestrutura , Oxazinas/metabolismo , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Proto-Oncogene Mas , Proteína Estafilocócica A/química , Trastuzumab/farmacologiaRESUMO
A novel one-pot method for the synthesis of polyethyleneimine (PEI)-coated gold nanoparticles (AuPEI-NPs) that combines the reductant-stabilizer properties of PEI with microwave irradiation starting from hydrogen tetrachloroaurate acid (HAuCl4 ) and branched PEI 25â kDa (b25kPEI) was explored. The method was straightforward, green, and low costing, for which the Au/PEI ratio (1:1 to 1:128â w/w) was a key parameter to modulate their capabilities as DNA delivery nanocarriers. Transfection assays in CHO-k1 cells demonstrated that AuPEI-NPs with 1:16 and 1:32â w/w ratios behaved as effective DNA gene vectors with improved transfection efficiencies (twofold) and significantly lower toxicity than unmodified b25kPEI and Lipofectamineâ 2000. The transfection mediated by these AuPEI-NP-DNA polyplexes preferentially used the caveolae-mediated route for intracellular internalization, as shown by studies performed by using specific internalization inhibitors as well as colocalization with markers of clathrin- and caveolae-dependent pathways. The AuPEI-NP polyplexes preferentially used the more efficient caveolae internalization pathway to promote transfection, a fact that supports their higher transfection efficiency relative to that of Lipofectamineâ 2000. In addition, intracellular trafficking of the AuPEI-NPs was studied by transmission electron microscopy.
Assuntos
DNA/metabolismo , Portadores de Fármacos/química , Ouro/química , Nanopartículas Metálicas/química , Polietilenoimina/química , Animais , Células CHO , Cavéolas/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Cricetinae , Cricetulus , DNA/química , Portadores de Fármacos/toxicidade , Difusão Dinâmica da Luz , Vetores Genéticos/metabolismo , Nanopartículas Metálicas/toxicidade , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , RNA Interferente Pequeno/química , RNA Interferente Pequeno/metabolismo , Espectrofotometria Ultravioleta , TransfecçãoRESUMO
We present a new chemistry to determine nitrites implemented in a microfluidic paper-based analytical device (µPAD). The device is fabricated in cellulose paper with a sample reception area and three replicate detection areas with recognition chemistry immobilized by adsorption. The method involves the use of nitrite in an acid medium reaction to generate nitrous acid, which produces the oxidation of s-dihydrotetrazine: 1,2-dihydro-3,6-bis(3,5-dimethyl-1H-pyrazol-1-yl)-1,2,4,5-tetrazine (DHBPTz), which change the detection zone from colorless to pink. We used a digital camera and smartphone for the quantitative analysis of nitrite with the color coordinate S of the HSV color space as the analytical parameter. Parameters such as concentration and volume of s-dihydrotetrazine, pH, sample volume and reaction time were studied. The detection limit for this method is 1.30µM nitrite. To estimate the selectivity of the method an interference study of common ions in water samples was performed. The procedure was applied to natural water and compared with reference procedures.
RESUMO
Gene transfection mediated by the cationic polymer polyethylenimine (PEI) is considered a standard methodology. However, while highly branched PEIs form smaller polyplexes with DNA that exhibit high transfection efficiencies, they have significant cell toxicity. Conversely, low molecular weight PEIs (LMW-PEIs) with favorable cytotoxicity profiles display minimum transfection activities as a result of inadequate DNA complexation and protection. To solve this paradox, a novel polyelectrolyte complex was prepared by the ionic cross-linking of branched 1.8 kDa PEI with citric acid (CA). This system synergistically exploits the good cytotoxicity profile exhibited by LMW-PEI with the high transfection efficiencies shown by highly branched and high molecular weight PEIs. The polyectrolyte complex (1.8 kDa-PEI@CA) was obtained by a simple synthetic protocol based on the microwave irradiation of a solution of 1.8 kDa PEI and CA. Upon complexation with DNA, intrinsic properties of the resulting particles (size and surface charge) were measured and their ability to form stable polyplexes was determined. Compared with unmodified PEIs the new complexes behave as efficient gene vectors and showed enhanced DNA binding capability associated with facilitated intracellular DNA release and enhanced DNA protection from endonuclease degradation. In addition, while transfection values for LMW-PEIs are almost null, transfection efficiencies of the new reagent range from 2.5- to 3.8-fold to those of Lipofectamine 2000 and 25 kDa PEI in several cell lines in culture such as CHO-k1, FTO2B hepatomas, L6 myoblasts, or NRK cells, simultaneously showing a negligible toxicity. Furthermore, the 1.8 kDa-PEI@CA polyelectrolyte complexes retained the capability to transfect eukaryotic cells in the presence of serum and exhibited the capability to promote in vivo transfection in mouse (as an animal model) with an enhanced efficiency compared to 25 kDa PEI. Results support the polyelectrolyte complex of LMW-PEI and CA as promising generic nonviral gene carriers.
Assuntos
Ácido Cítrico/química , Eletrólitos/química , Polietilenoimina/química , Transfecção , Linhagem Celular , Humanos , Técnicas In Vitro , Peso MolecularRESUMO
Bile acid sequestrants (BAS) represent a therapeutic approach for the management of hypercholesterolemia that relies on the cationic polymeric nature of BAS to selectively bind negatively charged bile acids. We hypothesized that the cross-linking of ß-cyclodextrin (ß-CD) and saccharides such as starch or dextrin with divinyl sulfone (DVS) yields homo- and hetero-polymeric materials with the ability to trap sterols. Our hypothesis was put to test by synthesizing a library of 22 polymers that were screened to evaluate their capability to sequester both cholesterol (CHOL) and cholic and deoxycholic acids (CA and DCA). Three polymers synthesized in high yield were identified as promising. Two were neutral hetero-polymers of ß-CD and starch or dextrin and the third was a weakly cationic homo-polymer of starch, highlighting the importance of the cavity effect. They were tested in hypercholesterolemic male Wistar rats and their ability to regulate hypercholesterolemia was similar to that for the reference BAS cholestyramine, but with two additional advantages: (i) they normalized the TG level and (ii) they did not increase the creatinine level. Neither hepatotoxicity nor kidney injury was detected, further supporting them as therapeutical candidates to manage hypercholesterolemia.