Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
PLoS Comput Biol ; 20(5): e1011350, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38701063

RESUMO

A fundamental challenge in neuroscience is accurately defining brain states and predicting how and where to perturb the brain to force a transition. Here, we investigated resting-state fMRI data of patients suffering from disorders of consciousness (DoC) after coma (minimally conscious and unresponsive wakefulness states) and healthy controls. We applied model-free and model-based approaches to help elucidate the underlying brain mechanisms of patients with DoC. The model-free approach allowed us to characterize brain states in DoC and healthy controls as a probabilistic metastable substate (PMS) space. The PMS of each group was defined by a repertoire of unique patterns (i.e., metastable substates) with different probabilities of occurrence. In the model-based approach, we adjusted the PMS of each DoC group to a causal whole-brain model. This allowed us to explore optimal strategies for promoting transitions by applying off-line in silico probing. Furthermore, this approach enabled us to evaluate the impact of local perturbations in terms of their global effects and sensitivity to stimulation, which is a model-based biomarker providing a deeper understanding of the mechanisms underlying DoC. Our results show that transitions were obtained in a synchronous protocol, in which the somatomotor network, thalamus, precuneus and insula were the most sensitive areas to perturbation. This motivates further work to continue understanding brain function and treatments of disorders of consciousness.


Assuntos
Encéfalo , Simulação por Computador , Transtornos da Consciência , Imageamento por Ressonância Magnética , Modelos Neurológicos , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagem , Transtornos da Consciência/fisiopatologia , Transtornos da Consciência/diagnóstico por imagem , Masculino , Feminino , Biologia Computacional , Adulto , Pessoa de Meia-Idade , Estado de Consciência/fisiologia , Mapeamento Encefálico/métodos , Idoso
2.
Netw Neurosci ; 8(1): 158-177, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562284

RESUMO

It has been previously shown that traumatic brain injury (TBI) is associated with reductions in metastability in large-scale networks in resting-state fMRI (rsfMRI). However, little is known about how TBI affects the local level of synchronization and how this evolves during the recovery trajectory. Here, we applied a novel turbulent dynamics framework to investigate whole-brain dynamics using an rsfMRI dataset from a cohort of moderate to severe TBI patients and healthy controls (HCs). We first examined how several measures related to turbulent dynamics differ between HCs and TBI patients at 3, 6, and 12 months post-injury. We found a significant reduction in these empirical measures after TBI, with the largest change at 6 months post-injury. Next, we built a Hopf whole-brain model with coupled oscillators and conducted in silico perturbations to investigate the mechanistic principles underlying the reduced turbulent dynamics found in the empirical data. A simulated attack was used to account for the effect of focal lesions. This revealed a shift to lower coupling parameters in the TBI dataset and, critically, decreased susceptibility and information-encoding capability. These findings confirm the potential of the turbulent framework to characterize longitudinal changes in whole-brain dynamics and in the reactivity to external perturbations after TBI.

3.
Front Neuroinform ; 18: 1382372, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590709

RESUMO

Traumatic Brain Injury (TBI) is a prevalent disorder mostly characterized by persistent impairments in cognitive function that poses a substantial burden on caregivers and the healthcare system worldwide. Crucially, severity classification is primarily based on clinical evaluations, which are non-specific and poorly predictive of long-term disability. In this Mini Review, we first provide a description of our model-free and model-based approaches within the turbulent dynamics framework as well as our vision on how they can potentially contribute to provide new neuroimaging biomarkers for TBI. In addition, we report the main findings of our recent study examining longitudinal changes in moderate-severe TBI (msTBI) patients during a one year spontaneous recovery by applying the turbulent dynamics framework (model-free approach) and the Hopf whole-brain computational model (model-based approach) combined with in silico perturbations. Given the neuroinflammatory response and heightened risk for neurodegeneration after TBI, we also offer future directions to explore the association with genomic information. Moreover, we discuss how whole-brain computational modeling may advance our understanding of the impact of structural disconnection on whole-brain dynamics after msTBI in light of our recent findings. Lastly, we suggest future avenues whereby whole-brain computational modeling may assist the identification of optimal brain targets for deep brain stimulation to promote TBI recovery.

4.
Trends Cogn Sci ; 28(6): 568-581, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38677884

RESUMO

To not only survive, but also thrive, the brain must efficiently orchestrate distributed computation across space and time. This requires hierarchical organisation facilitating fast information transfer and processing at the lowest possible metabolic cost. Quantifying brain hierarchy is difficult but can be estimated from the asymmetry of information flow. Thermodynamics has successfully characterised hierarchy in many other complex systems. Here, we propose the 'Thermodynamics of Mind' framework as a natural way to quantify hierarchical brain orchestration and its underlying mechanisms. This has already provided novel insights into the orchestration of hierarchy in brain states including movie watching, where the hierarchy of the brain is flatter than during rest. Overall, this framework holds great promise for revealing the orchestration of cognition.


Assuntos
Encéfalo , Termodinâmica , Humanos , Encéfalo/fisiologia , Cognição/fisiologia
5.
PLoS Comput Biol ; 20(1): e1011818, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38241383

RESUMO

Brain signal irreversibility has been shown to be a promising approach to study neural dynamics. Nevertheless, the relation with cortical hierarchy and the influence of different electrophysiological features is not completely understood. In this study, we recorded local field potentials (LFPs) during spontaneous behavior, including awake and sleep periods, using custom micro-electrocorticographic (µECoG) arrays implanted in ferrets. In contrast to humans, ferrets remain less time in each state across the sleep-wake cycle. We deployed a diverse set of metrics in order to measure the levels of complexity of the different behavioral states. In particular, brain irreversibility, which is a signature of non-equilibrium dynamics, captured by the arrow of time of the signal, revealed the hierarchical organization of the ferret's cortex. We found different signatures of irreversibility and functional hierarchy of large-scale dynamics in three different brain states (active awake, quiet awake, and deep sleep), showing a lower level of irreversibility in the deep sleep stage, compared to the other. Irreversibility also allowed us to disentangle the influence of different cortical areas and frequency bands in this process, showing a predominance of the parietal cortex and the theta band. Furthermore, when inspecting the embedded dynamic through a Hidden Markov Model, the deep sleep stage was revealed to have a lower switching rate and lower entropy production. These results suggest functional hierarchies in organization that can be revealed through thermodynamic features and information theory metrics.


Assuntos
Encéfalo , Furões , Animais , Humanos , Encéfalo/fisiologia , Sono/fisiologia , Mapeamento Encefálico/métodos , Vigília/fisiologia
6.
Netw Neurosci ; 7(3): 966-998, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781151

RESUMO

A promising idea in human cognitive neuroscience is that the default mode network (DMN) is responsible for coordinating the recruitment and scheduling of networks for computing and solving task-specific cognitive problems. This is supported by evidence showing that the physical and functional distance of DMN regions is maximally removed from sensorimotor regions containing environment-driven neural activity directly linked to perception and action, which would allow the DMN to orchestrate complex cognition from the top of the hierarchy. However, discovering the functional hierarchy of brain dynamics requires finding the best way to measure interactions between brain regions. In contrast to previous methods measuring the hierarchical flow of information using, for example, transfer entropy, here we used a thermodynamics-inspired, deep learning based Temporal Evolution NETwork (TENET) framework to assess the asymmetry in the flow of events, 'arrow of time', in human brain signals. This provides an alternative way of quantifying hierarchy, given that the arrow of time measures the directionality of information flow that leads to a breaking of the balance of the underlying hierarchy. In turn, the arrow of time is a measure of nonreversibility and thus nonequilibrium in brain dynamics. When applied to large-scale Human Connectome Project (HCP) neuroimaging data from close to a thousand participants, the TENET framework suggests that the DMN plays a significant role in orchestrating the hierarchy, that is, levels of nonreversibility, which changes between the resting state and when performing seven different cognitive tasks. Furthermore, this quantification of the hierarchy of the resting state is significantly different in health compared to neuropsychiatric disorders. Overall, the present thermodynamics-based machine-learning framework provides vital new insights into the fundamental tenets of brain dynamics for orchestrating the interactions between cognition and brain in complex environments.

7.
Sci Rep ; 13(1): 15698, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37735201

RESUMO

Large-scale brain networks reveal structural connections as well as functional synchronization between distinct regions of the brain. The latter, referred to as functional connectivity (FC), can be derived from neuroimaging techniques such as functional magnetic resonance imaging (fMRI). FC studies have shown that brain networks are severely disrupted by stroke. However, since FC data are usually large and high-dimensional, extracting clinically useful information from this vast amount of data is still a great challenge, and our understanding of the functional consequences of stroke remains limited. Here, we propose a dimensionality reduction approach to simplify the analysis of this complex neural data. By using autoencoders, we find a low-dimensional representation encoding the fMRI data which preserves the typical FC anomalies known to be present in stroke patients. By employing the latent representations emerging from the autoencoders, we enhanced patients' diagnostics and severity classification. Furthermore, we showed how low-dimensional representation increased the accuracy of recovery prediction.


Assuntos
Encéfalo , Acidente Vascular Cerebral , Humanos , Encéfalo/diagnóstico por imagem , Acidente Vascular Cerebral/diagnóstico por imagem , Neuroimagem
8.
Prog Neurobiol ; 227: 102468, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37301532

RESUMO

Surviving and thriving in a complex world require intricate balancing of higher order brain functions with essential survival-related behaviours. Exactly how this is achieved is not fully understood but a large body of work has shown that different regions in the prefrontal cortex (PFC) play key roles for diverse cognitive and emotional tasks including emotion, control, response inhibition, mental set shifting and working memory. We hypothesised that the key regions are hierarchically organised and we developed a framework for discovering the driving brain regions at the top of the hierarchy, responsible for steering the brain dynamics of higher brain function. We fitted a time-dependent whole-brain model to the neuroimaging data from large-scale Human Connectome Project with over 1000 participants and computed the entropy production for rest and seven tasks (covering the main domains of cognition). This thermodynamics framework allowed us to identify the main common, unifying drivers steering the orchestration of brain dynamics during difficult tasks; located in key regions of the PFC (inferior frontal gyrus, lateral orbitofrontal cortex, rostral and caudal frontal cortex and rostral anterior cingulate cortex). Selectively lesioning these regions in the whole-brain model demonstrated their causal mechanistic importance. Overall, this shows the existence of a 'ring' of specific PFC regions ruling over the orchestration of higher brain function.


Assuntos
Encéfalo , Córtex Pré-Frontal , Humanos , Córtex Pré-Frontal/fisiologia , Cognição/fisiologia , Emoções/fisiologia , Lobo Frontal , Mapeamento Encefálico
9.
Neuroimage ; 275: 120162, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37196986

RESUMO

Disorders of consciousness are complex conditions characterised by persistent loss of responsiveness due to brain injury. They present diagnostic challenges and limited options for treatment, and highlight the urgent need for a more thorough understanding of how human consciousness arises from coordinated neural activity. The increasing availability of multimodal neuroimaging data has given rise to a wide range of clinically- and scientifically-motivated modelling efforts, seeking to improve data-driven stratification of patients, to identify causal mechanisms for patient pathophysiology and loss of consciousness more broadly, and to develop simulations as a means of testing in silico potential treatment avenues to restore consciousness. As a dedicated Working Group of clinicians and neuroscientists of the international Curing Coma Campaign, here we provide our framework and vision to understand the diverse statistical and generative computational modelling approaches that are being employed in this fast-growing field. We identify the gaps that exist between the current state-of-the-art in statistical and biophysical computational modelling in human neuroscience, and the aspirational goal of a mature field of modelling disorders of consciousness; which might drive improved treatments and outcomes in the clinic. Finally, we make several recommendations for how the field as a whole can work together to address these challenges.


Assuntos
Lesões Encefálicas , Estado de Consciência , Humanos , Estado de Consciência/fisiologia , Transtornos da Consciência/diagnóstico por imagem , Lesões Encefálicas/complicações , Neuroimagem , Simulação por Computador
10.
Elife ; 122023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36995213

RESUMO

The treatment of neurodegenerative diseases is hindered by lack of interventions capable of steering multimodal whole-brain dynamics towards patterns indicative of preserved brain health. To address this problem, we combined deep learning with a model capable of reproducing whole-brain functional connectivity in patients diagnosed with Alzheimer's disease (AD) and behavioral variant frontotemporal dementia (bvFTD). These models included disease-specific atrophy maps as priors to modulate local parameters, revealing increased stability of hippocampal and insular dynamics as signatures of brain atrophy in AD and bvFTD, respectively. Using variational autoencoders, we visualized different pathologies and their severity as the evolution of trajectories in a low-dimensional latent space. Finally, we perturbed the model to reveal key AD- and bvFTD-specific regions to induce transitions from pathological to healthy brain states. Overall, we obtained novel insights on disease progression and control by means of external stimulation, while identifying dynamical mechanisms that underlie functional alterations in neurodegeneration.


Assuntos
Doença de Alzheimer , Demência Frontotemporal , Doenças Neurodegenerativas , Humanos , Doenças Neurodegenerativas/patologia , Imageamento por Ressonância Magnética , Encéfalo , Demência Frontotemporal/patologia , Doença de Alzheimer/patologia , Atrofia/patologia
11.
J Neurosci ; 43(9): 1643-1656, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36732071

RESUMO

Healthy brain dynamics can be understood as the emergence of a complex system far from thermodynamic equilibrium. Brain dynamics are temporally irreversible and thus establish a preferred direction in time (i.e., arrow of time). However, little is known about how the time-reversal symmetry of spontaneous brain activity is affected by Alzheimer's disease (AD). We hypothesized that the level of irreversibility would be compromised in AD, signaling a fundamental shift in the collective properties of brain activity toward equilibrium dynamics. We investigated the irreversibility from resting-state fMRI and EEG data in male and female human patients with AD and elderly healthy control subjects (HCs). We quantified the level of irreversibility and, thus, proximity to nonequilibrium dynamics by comparing forward and backward time series through time-shifted correlations. AD was associated with a breakdown of temporal irreversibility at the global, local, and network levels, and at multiple oscillatory frequency bands. At the local level, temporoparietal and frontal regions were affected by AD. The limbic, frontoparietal, default mode, and salience networks were the most compromised at the network level. The temporal reversibility was associated with cognitive decline in AD and gray matter volume in HCs. The irreversibility of brain dynamics provided higher accuracy and more distinctive information than classical neurocognitive measures when differentiating AD from control subjects. Findings were validated using an out-of-sample cohort. Present results offer new evidence regarding pathophysiological links between the entropy generation rate of brain dynamics and the clinical presentation of AD, opening new avenues for dementia characterization at different levels.SIGNIFICANCE STATEMENT By assessing the irreversibility of large-scale dynamics across multiple brain signals, we provide a precise signature capable of distinguishing Alzheimer's disease (AD) at the global, local, and network levels and different oscillatory regimes. Irreversibility of limbic, frontoparietal, default-mode, and salience networks was the most compromised by AD compared with more sensory-motor networks. Moreover, the time-irreversibility properties associated with cognitive decline and atrophy outperformed and complemented classical neurocognitive markers of AD in predictive classification performance. Findings were generalized and replicated with an out-of-sample validation procedure. We provide novel multilevel evidence of reduced irreversibility in AD brain dynamics that has the potential to open new avenues for understating neurodegeneration in terms of the temporal asymmetry of brain dynamics.


Assuntos
Doença de Alzheimer , Humanos , Masculino , Feminino , Idoso , Encéfalo , Córtex Cerebral , Mapeamento Encefálico , Substância Cinzenta , Imageamento por Ressonância Magnética
12.
Comput Struct Biotechnol J ; 21: 335-345, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36582443

RESUMO

Traditionally, in neuroimaging, model-free analyses are used to find significant differences between brain states via signal detection theory. Depending on the a priori assumptions about the underlying data, different spatio-temporal features can be analysed. Alternatively, model-based techniques infer features from the data and compare significance from model parameters. However, to assess transitions from one brain state to another remains a challenge in current paradigms. Here, we introduce a "Dynamic Sensitivity Analysis" framework that quantifies transitions between brain states in terms of stimulation ability to rebalance spatio-temporal brain activity towards a target state such as healthy brain dynamics. In practice, it means building a whole-brain model fitted to the spatio-temporal description of brain dynamics, and applying systematic stimulations in-silico to assess the optimal strategy to drive brain dynamics towards a target state. Further, we show how Dynamic Sensitivity Analysis extends to various brain stimulation paradigms, ultimately contributing to improving the efficacy of personalised clinical interventions.

13.
Phys Rev E ; 108(6-1): 064410, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38243472

RESUMO

The brain is a nonequilibrium system whose dynamics change in different brain states, such as wakefulness and deep sleep. Thermodynamics provides the tools for revealing these nonequilibrium dynamics. We used violations of the fluctuation-dissipation theorem to describe the hierarchy of nonequilibrium dynamics associated with different brain states. Together with a whole-brain model fitted to empirical human neuroimaging data, and deriving the appropriate analytical expressions, we were able to capture the deviation from equilibrium in different brain states that arises from asymmetric interactions and hierarchical organization.


Assuntos
Encéfalo , Humanos , Termodinâmica , Encéfalo/diagnóstico por imagem
14.
Cereb Cortex Commun ; 3(4): tgac045, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36479448

RESUMO

Human behavior and cognitive function correlate with complex patterns of spatio-temporal brain dynamics, which can be simulated using computational models with different degrees of biophysical realism. We used a data-driven optimization algorithm to determine and classify the types of local dynamics that enable the reproduction of different observables derived from functional magnetic resonance recordings. The phase space analysis of the resulting equations revealed a predominance of stable spiral attractors, which optimized the similarity to the empirical data in terms of the synchronization, metastability, and functional connectivity dynamics. For stable limit cycles, departures from harmonic oscillations improved the fit in terms of functional connectivity dynamics. Eigenvalue analyses showed that proximity to a bifurcation improved the accuracy of the simulation for wakefulness, whereas deep sleep was associated with increased stability. Our results provide testable predictions that constrain the landscape of suitable biophysical models, while supporting noise-driven dynamics close to a bifurcation as a canonical mechanism underlying the complex fluctuations that characterize endogenous brain activity.

15.
PLoS Comput Biol ; 18(11): e1010662, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36322525

RESUMO

Despite decades of research, there is still a lack of understanding of the role and generating mechanisms of the ubiquitous fluctuations and oscillations found in recordings of brain dynamics. Here, we used whole-brain computational models capable of presenting different dynamical regimes to reproduce empirical data's turbulence level. We showed that the model's fluctuations regime fitted to turbulence more faithfully reproduces the empirical functional connectivity compared to oscillatory and noise regimes. By applying global and local strength-dependent perturbations and subsequently measuring the responsiveness of the model, we revealed each regime's computational capacity demonstrating that brain dynamics is shifted towards fluctuations to provide much-needed flexibility. Importantly, fluctuation regime stimulation in a brain region within a given resting state network modulates that network, aligned with previous empirical and computational studies. Furthermore, this framework generates specific, testable empirical predictions for human stimulation studies using strength-dependent rather than constant perturbation. Overall, the whole-brain models fitted to the level of empirical turbulence together with functional connectivity unveil that the fluctuation regime best captures empirical data, and the strength-dependent perturbative framework demonstrates how this regime provides maximal flexibility to the human brain.


Assuntos
Modelos Neurológicos , Fenômenos Fisiológicos do Sistema Nervoso , Humanos , Encéfalo/fisiologia , Mapeamento Encefálico , Convulsões , Imageamento por Ressonância Magnética , Rede Nervosa/fisiologia
16.
PLoS Comput Biol ; 18(9): e1010412, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36067227

RESUMO

The self-organising global dynamics underlying brain states emerge from complex recursive nonlinear interactions between interconnected brain regions. Until now, most efforts of capturing the causal mechanistic generating principles have supposed underlying stationarity, being unable to describe the non-stationarity of brain dynamics, i.e. time-dependent changes. Here, we present a novel framework able to characterise brain states with high specificity, precisely by modelling the time-dependent dynamics. Through describing a topological structure associated to the brain state at each moment in time (its attractor or 'information structure'), we are able to classify different brain states by using the statistics across time of these structures hitherto hidden in the neuroimaging dynamics. Proving the strong potential of this framework, we were able to classify resting-state BOLD fMRI signals from two classes of post-comatose patients (minimally conscious state and unresponsive wakefulness syndrome) compared with healthy controls with very high precision.


Assuntos
Encéfalo , Estado Vegetativo Persistente , Encéfalo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Neuroimagem , Vigília
17.
Commun Biol ; 5(1): 572, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35688893

RESUMO

Finding precise signatures of different brain states is a central, unsolved question in neuroscience. We reformulated the problem to quantify the 'inside out' balance of intrinsic and extrinsic brain dynamics in brain states. The difference in brain state can be described as differences in the detailed causal interactions found in the underlying intrinsic brain dynamics. We used a thermodynamics framework to quantify the breaking of the detailed balance captured by the level of asymmetry in temporal processing, i.e. the arrow of time. Specifically, the temporal asymmetry was computed by the time-shifted correlation matrices for the forward and reversed time series, reflecting the level of non-reversibility/non-equilibrium. We found precise, distinguishing signatures in terms of the reversibility and hierarchy of large-scale dynamics in three radically different brain states (awake, deep sleep and anaesthesia) in electrocorticography data from non-human primates. Significantly lower levels of reversibility were found in deep sleep and anaesthesia compared to wakefulness. Non-wakeful states also showed a flatter hierarchy, reflecting the diversity of the reversibility across the brain. Overall, this provides signatures of the breaking of detailed balance in different brain states, perhaps reflecting levels of conscious awareness.


Assuntos
Encéfalo , Vigília , Animais , Estado de Consciência , Eletrocorticografia , Fatores de Tempo
18.
Hum Brain Mapp ; 43(13): 4103-4115, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35583382

RESUMO

How the brain represents gender identity is largely unknown, but some neural differences have recently been discovered. We used an intrinsic ignition framework to investigate whether there are gender differences in the propagation of neural activity across the whole-brain and within resting-state networks. Studying 29 trans men and 17 trans women with gender incongruence, 22 cis women, and 19 cis men, we computed the capability of a given brain area in space to propagate activity to other areas (mean-ignition), and the variability across time for each brain area (node-metastability). We found that both measurements differentiated all groups across the whole brain. At the network level, we found that compared to the other groups, cis men showed higher mean-ignition of the dorsal attention network and node-metastability of the dorsal and ventral attention, executive control, and temporal parietal networks. We also found higher mean-ignition values in cis men than in cis women within the executive control network, but higher mean-ignition in cis women than cis men and trans men for the default mode. Node-metastability was higher in cis men than cis women in the somatomotor network, while both mean-ignition and node-metastability were higher for cis men than trans men in the limbic network. Finally, we computed correlations between these measurements and a body image satisfaction score. Trans men's dissatisfaction as well as cis men's and cis women's satisfaction toward their own body image were distinctively associated with specific networks in each group. Overall, the study of the whole-brain network dynamical complexity discriminates gender identity groups, functional dynamic approaches could help disentangle the complex nature of the gender dimension in the brain.


Assuntos
Pessoas Transgênero , Encéfalo/diagnóstico por imagem , Feminino , Identidade de Gênero , Humanos , Masculino
19.
Cereb Cortex ; 33(1): 235-245, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-35311898

RESUMO

Understanding the brain changes occurring during aging can provide new insights for developing treatments that alleviate or reverse cognitive decline. Neurostimulation techniques have emerged as potential treatments for brain disorders and to improve cognitive functions. Nevertheless, given the ethical restrictions of neurostimulation approaches, in silico perturbation protocols based on causal whole-brain models are fundamental to gaining a mechanistic understanding of brain dynamics. Furthermore, this strategy could serve to identify neurophysiological biomarkers differentiating between age groups through an exhaustive exploration of the global effect of all possible local perturbations. Here, we used a resting-state fMRI dataset divided into middle-aged (N =310, <65 years) and older adults (N =310, $\geq $65) to characterize brain states in each group as a probabilistic metastable substate (PMS) space. We showed that the older group exhibited a reduced capability to access a metastable substate that overlaps with the rich club. Then, we fitted the PMS to a whole-brain model and applied in silico stimulations in each node to force transitions from the brain states of the older- to the middle-aged group. We found that the precuneus was the best stimulation target. Overall, these findings could have important implications for designing neurostimulation interventions for reversing the effects of aging on whole-brain dynamics.


Assuntos
Envelhecimento , Encéfalo , Pessoa de Meia-Idade , Humanos , Idoso , Encéfalo/fisiologia , Envelhecimento/fisiologia , Imageamento por Ressonância Magnética , Cognição/fisiologia , Lobo Parietal , Mapeamento Encefálico
20.
Front Neurosci ; 15: 753820, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34955718

RESUMO

Brain dynamics have recently been shown to be modulated by rhythmic changes in female sex hormone concentrations across an entire menstrual cycle. However, many questions remain regarding the specific differences in information processing across spacetime between the two main follicular and luteal phases in the menstrual cycle. Using a novel turbulent dynamic framework, we studied whole-brain information processing across spacetime scales (i.e., across long and short distances in the brain) in two open-source, dense-sampled resting-state datasets. A healthy naturally cycling woman in her early twenties was scanned over 30 consecutive days during a naturally occurring menstrual cycle and under a hormonal contraceptive regime. Our results indicated that the luteal phase is characterized by significantly higher information transmission across spatial scales than the follicular phase. Furthermore, we found significant differences in turbulence levels between the two phases in brain regions belonging to the default mode, salience/ventral attention, somatomotor, control, and dorsal attention networks. Finally, we found that changes in estradiol and progesterone concentrations modulate whole-brain turbulent dynamics in long distances. In contrast, we reported no significant differences in information processing measures between the active and placebo phases in the hormonal contraceptive study. Overall, the results demonstrate that the turbulence framework is able to capture differences in whole-brain turbulent dynamics related to ovarian hormones and menstrual cycle stages.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA