Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 9(12)2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33316969

RESUMO

Among the primary contributors to cardiovascular diseases are inflammation and oxidative imbalance within the vessel walls as well as the fibrosis of rat aortic smooth muscle cell (RASMC). Bradykinin (BK) and leptin are inflammatory modulators that are linked to vascular injury. In this study, we employed tandem LC-MS/MS to identify protein signatures that encompass protein abundance in RASMC treated with BK or leptin followed by systems biology analyses to gain insight into the biological pathways and processes linked to vascular remodeling. In the study, 1837 proteins were identified in control untreated RASMC. BK altered the expression of 72 (4%) and 120 (6.5%) proteins, whereas leptin altered the expression of 189 (10.2%) and 127 (6.5%) proteins after 24 and 48 h, respectively, compared to control RASMC. BK increased the protein abundance of leptin receptor, transforming growth factor-ß. On the other hand, leptin increased the protein abundance of plasminogen activator inhibitor 1 but decreased the protein abundance of cofilin. BK and leptin induced the expression of inflammatory cytokines such as tumor necrosis factor alpha (TNF-α) and interleukin-1ß (IL-1ß) and pathway analysis revealed the activation of mitogen-activated protein kinases (MAPKs) and AKT pathways. The proteome profile in response to BK and leptin revealed mechanistic interplay of multiple processes that modulate inflammation and oxidative stress signals in the vasculature.

2.
J Adv Res ; 24: 409-422, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32518694

RESUMO

Podocyte damage is one of the hallmarks of diabetic nephropathy leading to proteinuria and kidney damage. The underlying mechanisms of podocyte injury are not well defined. Bradykinin (BK) was shown to contribute to diabetic kidney disease. Here, we evaluated the temporal changes in proteome profile and inflammatory signals of podocytes in response to BK (10-7M). Protein profile was evaluated by liquid chromatography mass Spectrometry (LC-MS/MS) analysis. Proteome profile analysis of podocytes treated with BK (10-7M) for 3 and 6 h, revealed 61 proteins that were differentially altered compared to unstimulated control podocytes. Pathway enrichment analysis suggested inhibition of cell death pathways, engagement of cytoskeletal elements and activation of inflammatory pathways. One of the inflammatory proteins that was identified to be induced by BK treatment is Prostaglandin (PG) H Synthase-2 (Cyclooxygenase-2, COX-2). In addition, BK significantly induced the production and release of PGE2 and this effect was inhibited by both COX-2 and MEK Kinase inhibitors, demonstrating that the production of PGE2 by BK is mediated via COX-2 and MAPK-dependent mechanisms. These findings provide a global understanding of the effector modulated proteome in response to BK and also reveal BK as an important modulator of inflammation and a potential player in podocyte injury.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA