Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 299(1): 102745, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36436558

RESUMO

Nudix hydrolase 7 (NUDT7) is an enzyme that hydrolyzes CoA species, is highly expressed in the liver, and resides in the peroxisomes. Peroxisomes are organelles where the preferential oxidation of dicarboxylic fatty acids occurs and where the hepatic synthesis of the primary bile acids cholic acid and chenodeoxycholic acid is completed. We previously showed that liver-specific overexpression of NUDT7 affects peroxisomal lipid metabolism but does not prevent the increase in total liver CoA levels that occurs during fasting. We generated Nudt7-/- mice to further characterize the role that peroxisomal (acyl-)CoA degradation plays in the modulation of the size and composition of the acyl-CoA pool and in the regulation of hepatic lipid metabolism. Here, we show that deletion of Nudt7 alters the composition of the hepatic acyl-CoA pool in mice fed a low-fat diet, but only in males fed a Western diet does the lack of NUDT7 activity increase total liver CoA levels. This effect is driven by the male-specific accumulation of medium-chain dicarboxylic acyl-CoAs, which are produced from the ß-oxidation of dicarboxylic fatty acids. We also show that, under conditions of elevated synthesis of chenodeoxycholic acid derivatives, Nudt7 deletion promotes the production of tauromuricholic acid, decreasing the hydrophobicity index of the intestinal bile acid pool and increasing fecal cholesterol excretion in male mice. These findings reveal that NUDT7-mediated hydrolysis of acyl-CoA pathway intermediates in liver peroxisomes contributes to the regulation of dicarboxylic fatty acid metabolism and the composition of the bile acid pool.


Assuntos
Ácidos e Sais Biliares , Dieta Ocidental , Animais , Masculino , Camundongos , Acil Coenzima A/metabolismo , Ácidos e Sais Biliares/metabolismo , Ácido Quenodesoxicólico , Ácidos Graxos/metabolismo , Fígado/metabolismo , Oxirredução , Nudix Hidrolases
2.
J Vis Exp ; (175)2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34570107

RESUMO

Fatty acid ß-oxidation is a key metabolic pathway to meet the energy demands of the liver and provide substrates and cofactors for additional processes, such as ketogenesis and gluconeogenesis, which are essential to maintain whole-body glucose homeostasis and support extra-hepatic organ function in the fasted state. Fatty acid ß-oxidation occurs within the mitochondria and peroxisomes and is regulated through multiple mechanisms, including the uptake and activation of fatty acids, enzyme expression levels, and availability of cofactors such as coenzyme A and NAD+. In assays that measure fatty acid ß-oxidation in liver homogenates, cell lysis and the common addition of supraphysiological levels of cofactors mask the effects of these regulatory mechanisms. Furthermore, the integrity of the organelles in the homogenates is hard to control and can vary significantly between preparations. The measurement of fatty acid ß-oxidation in intact primary hepatocytes overcomes the above pitfalls. This protocol describes a method for the measurement of fatty acid ß-oxidation in a suspension of freshly isolated primary mouse hepatocytes incubated with 14C-labeled palmitic acid. By avoiding hours to days of culture, this method has the advantage of better preserving the protein expression levels and metabolic pathway activity of the original liver, including the activation of fatty acid ß-oxidation observed in hepatocytes isolated from fasted mice compared to fed mice.


Assuntos
Ácidos Graxos , Gluconeogênese , Animais , Ácidos Graxos/metabolismo , Hepatócitos , Fígado/metabolismo , Camundongos , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA