Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Microorganisms ; 9(9)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34576691

RESUMO

Human norovirus is the leading cause of acute gastroenteritis worldwide, affecting every year 685 million people. Norovirus outbreaks are associated with very significant economic losses, with an estimated societal cost of 60 billion USD per year. Despite this, no therapeutic options or vaccines are currently available to treat or prevent this infection. An antiviral therapy that can be used as treatment and as a prophylactic measure in the case of outbreaks is urgently needed. We previously described the computer-aided design and synthesis of novel small-molecule agents able to inhibit the replication of human norovirus in cell-based systems. These compounds are non-nucleoside inhibitors of the viral polymerase and are characterized by a terminal para-substituted phenyl group connected to a central phenyl ring by an amide-thioamide linker, and a terminal thiophene ring. Here we describe new modifications of these scaffolds focused on exploring the role of the substituent at the para position of the terminal phenyl ring and on removing the thioamide portion of the amide-thioamide linker, to further explore structure-activity relationships (SARs) and improve antiviral properties. According to three to four-step synthetic routes, we prepared thirty novel compounds, which were then evaluated against the replication of both murine (MNV) and human (HuNoV) norovirus in cells. Derivatives in which the terminal phenyl group has been replaced by an unsubstituted benzoxazole or indole, and the thioamide component of the amide-thioamide linker has been removed, showed promising results in inhibiting HuNoV replication at low micromolar concentrations. Particularly, compound 28 was found to have an EC50 against HuNoV of 0.9 µM. Although the most active novel derivatives were also associated with an increased cytotoxicity in the human cell line, these compounds represent a very promising starting point for the development of new analogues with reduced cytotoxicity and improved selectivity indexes. In addition, the experimental biological data have been used to create an initial 3D quantitative structure-activity relationship model, which could be used to guide the future design of novel potential anti-norovirus agents.

2.
Antiviral Res ; 178: 104781, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32234539

RESUMO

Enteroviruses (EV) are a group of positive-strand RNA (+RNA) viruses that include many important human pathogens (e.g. poliovirus, coxsackievirus, echovirus, numbered enteroviruses and rhinoviruses). Fluoxetine was identified in drug repurposing screens as potent inhibitor of enterovirus B and enterovirus D replication. In this paper we are reporting the synthesis and the antiviral effect of a series of fluoxetine analogues. The results obtained offer a preliminary insight into the structure-activity relationship of its chemical scaffold and confirm the importance of the chiral configuration. We identified a racemic fluoxetine analogue, 2b, which showed a similar antiviral activity compared to (S)-fluoxetine. Investigating the stereochemistry of 2b revealed that the S-enantiomer exerts potent antiviral activity and increased the antiviral spectrum compared to the racemic mixture of 2b. In line with the observed antiviral effect, the S-enantiomer displayed a dose-dependent shift in the melting temperature in thermal shift assays, indicative for direct binding to the recombinant 2C protein.


Assuntos
Antivirais/farmacologia , Proteínas de Transporte/antagonistas & inibidores , Enterovirus Humano B/efeitos dos fármacos , Enterovirus Humano D/efeitos dos fármacos , Fluoxetina/análogos & derivados , Proteínas não Estruturais Virais/antagonistas & inibidores , Animais , Antivirais/síntese química , Antivirais/química , Antivirais/metabolismo , Proteínas de Transporte/metabolismo , Linhagem Celular , Efeito Citopatogênico Viral/efeitos dos fármacos , Enterovirus Humano B/fisiologia , Enterovirus Humano D/fisiologia , Fluoxetina/química , Fluoxetina/metabolismo , Fluoxetina/farmacologia , Células HeLa , Humanos , Estereoisomerismo , Relação Estrutura-Atividade , Proteínas não Estruturais Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA