Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Polymers (Basel) ; 16(15)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39125249

RESUMO

Thermoplastic composite organosheets (OSs) are increasingly recognized as a viable solution for automotive and aerospace structures, offering a range of benefits including cost-effectiveness through high-rate production, lightweight design, impact resistance, formability, and recyclability. This study examines the impact response, post-impact strength evaluation, and hot-pressing repair effectiveness of woven glass fiber nylon composite OSs across varying impact energy levels. Experimental investigations involved subjecting composite specimens to impact at varying energy levels using a drop-tower test rig, followed by compression-after-impact (CAI) tests. The results underscore the exceptional damage tolerance and improved residual compressive strength of the OSs compared to traditional thermoset composites. This enhancement was primarily attributed to the matrix's ductility, which mitigated transverse crack propagation and significantly increased the amount of absorbed energy. To mitigate impact-induced damage, a localized hot-pressing repair approach was developed. This allowed to restore the post-impact strength of the OSs to pristine levels for impact energies below 40 J and by 83.6% for higher impact energies, when OS perforation was observed. The measured levels of post-repair strength demonstrate a successful restoration of OS strength over a wide range of impact energies, and despite limitations in achieving complete strength recovery above 40 J, hot-pressing repair emerges as a promising strategy for ensuring the longevity of thermoplastic composites through repairability.

2.
Bioorg Chem ; 150: 107525, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38852308

RESUMO

This review explores the recent advancements in the design and synthesis of pseudo-natural products (pseudo-NPs) by employing innovative principles and strategies, heralding a transformative era in chemistry and biology. Pseudo-NPs, produced through in silico fragmentation and the de novo recombination of natural product fragments, reveal compounds endowed with distinct biological activities. Their advantage lies in transcending natural product structures, fostering diverse possibilities. Research in this area over the past decade has yielded unconventional combinations of natural product fragments, leading to the identification of novel compounds possessing unique scaffolds and biological significance, thereby contributing to the discovery of new therapeutics. The pseudo-NPs exert potent biological effects through various signaling pathways. In chemical biology and medicinal chemistry, designing pseudo-NPs is an important strategy, harnessing molecular hybridization and bioinspired synthesis to generate diverse compounds with remarkable biological activities, underscoring their immense potential in drug discovery and development.


Assuntos
Produtos Biológicos , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Produtos Biológicos/síntese química , Humanos , Estrutura Molecular , Descoberta de Drogas , Animais
3.
RSC Adv ; 14(17): 12009-12020, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38623290

RESUMO

Human skin emits a series of volatile compounds from the skin due to various metabolic processes, microbial activity, and several external factors. Changes in the concentration of skin volatile metabolites indicate many diseases, including diabetes, cancer, and infectious diseases. Researchers focused on skin-emitted compounds to gain insight into the pathophysiology of various diseases. In the case of skin volatolomics research, it is noteworthy that sample preparation, sampling protocol, analytical techniques, and comprehensive validation are important for the successful integration of skin metabolic profiles into regular clinical settings. Solid-phase microextraction techniques and polymer-based active sorbent traps were developed to capture the skin-emitted volatile compounds. The primary advantage of these sample preparation techniques is the ability to efficiently and targetedly capture skin metabolites, thus improving the detection of the biomarkers associated with various diseases. In further research, polydimethyl-based patches were utilized for skin research due to their biocompatibility and thermal stability properties. The microextraction sampling tools coupled with high sensitive Gas Chromatography-Mass Spectrometer provided a potential platform for skin volatolomes, thus emerging as a state-of-the-art analytical technique. Later, technological advancements, including the design of wearable sensors, have enriched skin-based research as it can integrate the information from skin-emitted volatile profiles into a portable platform. However, individual-specific hydration, temperature, and skin conditions can influence variations in skin volatile concentration. Considering the subject-specific skin depth, sampling time standardization, and suitable techniques may improve the skin sampling techniques for the potential discovery of various skin-based marker compounds associated with diseases. Here, we have summarised the current research progress, limitations, and technological advances in skin-based sample preparation techniques for disease diagnosis, monitoring, and personalized healthcare applications.

4.
Biomed Phys Eng Express ; 10(4)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38457844

RESUMO

Objective.Although emotion recognition has been studied for decades, a more accurate classification method that requires less computing is still needed. At present, in many studies, EEG features are extracted from all channels to recognize emotional states, however, there is a lack of an efficient feature domain that improves classification performance and reduces the number of EEG channels.Approach.In this study, a continuous wavelet transform (CWT)-based feature representation of multi-channel EEG data is proposed for automatic emotion recognition. In the proposed feature, the time-frequency domain information is preserved by using CWT coefficients. For a particular EEG channel, each CWT coefficient is mapped into a strength-to-entropy component ratio to obtain a 2D representation. Finally, a 2D feature matrix, namely CEF2D, is created by concatenating these representations from different channels and fed into a deep convolutional neural network architecture. Based on the CWT domain energy-to-entropy ratio, effective channel and CWT scale selection schemes are also proposed to reduce computational complexity.Main results.Compared with previous studies, the results of this study show that valence and arousal classification accuracy has improved in both 3-class and 2-class cases. For the 2-class problem, the average accuracies obtained for valence and arousal dimensions are 98.83% and 98.95%, respectively, and for the 3-class, the accuracies are 98.25% and 98.68%, respectively.Significance.Our findings show that the entropy-based feature of EEG data in the CWT domain is effective for emotion recognition. Utilizing the proposed feature domain, an effective channel selection method can reduce computational complexity.


Assuntos
Algoritmos , Eletroencefalografia , Emoções , Redes Neurais de Computação , Análise de Ondaletas , Humanos , Eletroencefalografia/métodos , Processamento de Sinais Assistido por Computador , Entropia , Nível de Alerta/fisiologia
5.
Front Pharmacol ; 14: 1231450, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37745072

RESUMO

Twelve novel neo-tanshinlactone-chalcone hybrid molecules were constructed through a versatile methodology involving the Horner-Wadsworth-Emmons (HWE) olefination of 4-formyl-2H-benzo [h]chromen-2-ones and phosphonic acid diethyl esters, as the key step, and evaluated for anticancer activity against a series of four breast cancers and their related cell lines, viz. MCF-7 (ER + ve), MDA-MB-231 (ER-ve), HeLa (cervical cancer), and Ishikawa (endometrial cancer). The title compounds showed excellent to moderate in vitro anti-cancer activity in a range of 6.8-19.2 µM (IC50). Compounds 30 (IC50 = 6.8 µM and MCF-7; IC50 = 8.5 µM and MDA-MB-231) and 31 (IC50 = 14.4 µM and MCF-7; IC50 = 15.7 µM and MDA-MB-231) exhibited the best activity with compound 30 showing more potent activity than the standard drug tamoxifen. Compound 30 demonstrated a strong binding affinity with tumor necrosis factor α (TNF-α) in molecular docking studies. This is significant because TNFα is linked to MCF-7 cancer cell lines, and it enhances luminal breast cancer cell proliferation by upregulating aromatase. Additionally, virtual ADMET studies confirmed that hybrid compounds 30 and 31 met Lipinski's rule; displayed high bioavailability, excellent oral absorption, favorable albumin interactions, and strong penetration capabilities; and improved blood-brain barrier crossing. Based on the aforementioned results, compound 30 has been identified as a potential anti-breast cancer lead molecule.

6.
Molecules ; 28(15)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37570823

RESUMO

Polo-like kinase-1 (PLK-1) is an essential mitotic serine/threonine (Ser/Thr) kinase that belongs to the Polo-like kinase (PLK) family and is overexpressed in non-small cell lung cancer (NSCLC) via promotion of cell division. Therefore, PLK-1 may act as a promising target for the therapeutic cure of various cancers. Although a variety of anti-cancer drugs, both synthetic and naturally occurring, such as volasertib, onvansertib, thymoquinone, and quercetin, are available either alone or in combination with other therapies, they have limited efficacy, especially in the advanced stages of cancer. To the best of our knowledge, no anticancer agent has been reported from marine algae or microorganisms to date. Thus, the aim of the present study is a high-throughput virtual screening of phlorotannins, obtained from edible brown algae, using molecular docking and molecular dynamic simulation analysis. Among these, Pentafuhalol-B (PtB) showed the lowest binding energy (best of triplicate runs) against the target protein PLK-1 as compared to the reference drug volasertib. Further, in MD simulation (best of triplicate runs), the PtB-PLK-1 complex displayed stability in an implicit water system through the formation of strong molecular interactions. Additionally, MMGBSA calculation (best of triplicate runs) was also performed to validate the PtB-PLK-1 complex binding affinities and stability. Moreover, the chemical reactivity of PtB towards the PLK-1 target was also optimised using density functional theory (DFT) calculations, which exhibited a lower HOMO-LUMO energy gap. Overall, these studies suggest that PtB binds strongly within the pocket sites of PLK-1 through the formation of a stable complex, and also shows higher chemical reactivity than the reference drug volasertib. The present study demonstrated the inhibitory nature of PtB against the PLK-1 protein, establishing its potential usefulness as a small molecule inhibitor for the treatment of different types of cancer.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Simulação de Acoplamento Molecular , Proteínas de Ciclo Celular/metabolismo , Divisão Celular , Antineoplásicos/farmacologia , Antineoplásicos/química
7.
Front Pharmacol ; 14: 1168566, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37214464

RESUMO

Herein, we report an efficient and eco-friendly, ultrasound assisted synthetic strategy for the construction of diversified pyrrolobenzodiazepine-triazole hybrids, which are potentially pharmaceutically important scaffolds, via a domino reaction involving intermolecular electrophilic substitution followed by intramolecular Huisgen 1,3-dipolar azide-alkyne cycloaddition. The USP of the reported protocol is the use of benign and inexpensive, recyclable molecular iodine-ionic liquid synergistic catalytic system cum reaction media for achieving the synthesis. The other salient features of this method are the use of mild reaction conditions, high yield and atom economy, operational simplicity, broad substrate scope and easy workup and purification. All the synthesized compounds were evaluated for in vitro anti-proliferative activity against various cancer cell lines. From among the synthesized title compounds, 9,9-dimethyl-8-phenyl-9H-benzo [b]pyrrolo [1,2-d][1,2,3]triazolo[5,1-g][1,4]diazepine (7) was found most to be the most active compound exhibiting IC50 value of 6.60, 5.45, 7.85, 11.21, 12.24, 10.12, and 11.32 µM against MCF-7, MDA-MB-231, HeLa, SKOV-3, A549, HCT-116 and DLD-1 cell lines, respectively. Further the compounds were found to be non-toxic against normal human embryonic kidney (HEK-293) cell line.

8.
Med Chem ; 19(5): 413-430, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36200254

RESUMO

Pathogenic bacteria, with their innate resistance to drugs, pose a constant threat to human health and well-being and put a persistent strain on the health care system. Development of more effective and safer novel antibacterial drugs is warranted to counter the menace unleashed by pathogenic bacteria. Integration of privileged pharmacophores from various bioactive molecules into a single template is a promising strategy to obtain new leads with unique mechanisms of action to overcome drug resistance. In the past few years, numerous isatin-based hybrid molecules were screened and their pharmacological properties were explored in efforts to develop novel therapeutics. The results of screening show that isatin conjugates exhibit promising activity against a broad range of highly pathogenic gram-positive and gram-negative bacteria and can serve as important leads in the discovery of highly potent broad spectrum antibacterial drugs. Herein, we review the antibacterial bioactive profile of a variety of hybrid isatin derivatives, including isatin-azole, isatin-quinoline/ quinolone, isatin-furan/coumarin, isatin-hydrazone/(thio)semicarbazone, isatin dimers, and isatin- indole hybrids.


Assuntos
Antibacterianos , Isatina , Humanos , Antibacterianos/farmacologia , Isatina/farmacologia , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Bactérias , Relação Estrutura-Atividade , Testes de Sensibilidade Microbiana
9.
IEEE J Transl Eng Health Med ; 10: 3300108, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36032311

RESUMO

Background: The emergence of wireless capsule endoscopy (WCE) has presented a viable non-invasive mean of identifying gastrointestinal diseases in the field of clinical gastroenterology. However, to overcome its extended time of manual inspection, a computer aided automatic detection system is getting vast popularity. In this case, major challenges are low resolution and lack of regional context in images extracted from WCE videos. Methods: For tackling these challenges, in this paper a convolution neural network (CNN) based architecture, namely RAt-CapsNet, is proposed that reliably employs regional information and attention mechanism to classify abnormalities from WCE video data. The proposed RAt-CapsNet consists of two major pipelines: Compression Pipeline and Regional Correlative Pipeline. In the compression pipeline, an encoder module is designed using a Volumetric Attention Mechanism which provides 3D enhancement to feature maps using spatial domain condensation as well as channel-wise filtering for preserving relevant structural information of images. On the other hand, the regional correlative pipeline consists of Pyramid Feature Extractor which operates on image driven feature vectors to generalize and propagate local relationships of pixels from WCE abnormalities with respect to the normal healthy surrounding. The feature vectors generated by the pipelines are then accumulated to formulate a classification standpoint. Results: Promising computational accuracy of mean 98.51% in binary class and over 95.65% in multi-class are obtained through extensive experimentation on a highly unbalanced public dataset with over 47 thousand labelled. Conclusion: This outcome in turn supports the efficacy of the proposed methodology as a noteworthy WCE abnormality detection as well as diagnostic system.


Assuntos
Endoscopia por Cápsula , Compressão de Dados , Aprendizado Profundo , Animais , Trato Gastrointestinal , Redes Neurais de Computação , Ratos
10.
Appl Biochem Biotechnol ; 194(12): 6438-6467, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35900713

RESUMO

Oxygen- and sulphur-based heterocycles form the core structure of many biologically active molecules as well as U.S. FDA-approved drugs. Moreover, they possess broad range of biological activities, viz. anticancer, antiinflammatory, antioxidant, antitumour, antibacterial, antiviral, antidiabetic, anticonvulsant, anti-tubercular, analgesic, anti-leishmanial, antimalarial, antifungal, and anti-histaminic, Hence, O- and S-based heterocycles are gaining more attention in recent years on the road to the discovery of innovative anticancer drugs after the extensive investigation of nitrogen-based heterocycles as anticancer agents. Several attempts have been made to synthesize fused oxygen- and sulphur-based heterocyclic derivatives as joining one heterocyclic moiety with another may lead to improvement in the biological profile of a molecule. Humans have been cursed with cancer since long time. Despite the development of several heterocyclic anticancer medications such as 5-fluorouracil, doxorubicin, methotrexate, and daunorubicin, cure of cancer is difficult. Hence, researchers are trying to synthesize new fused/spiro heterocyclic molecules to discover novel anticancer drugs which may show promising anticancer effects with fewer side effects. Furthermore, fused heterocycles behave as DNA intercalating agents which have the ability to interact with DNA, leading to cell death thereby exerting anticancer effect. This review article highlights the synthesis and anticancer potentiality of oxygen- and sulphur-containing heterocyclic compounds covering the period from 2011 to 2021.


Assuntos
Antineoplásicos , Compostos Heterocíclicos , Neoplasias , Humanos , Oxigênio , Compostos Heterocíclicos/farmacologia , Compostos Heterocíclicos/uso terapêutico , Compostos Heterocíclicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Neoplasias/tratamento farmacológico , Enxofre
11.
Anticancer Agents Med Chem ; 22(19): 3269-3279, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35418291

RESUMO

BACKGROUND: In recent years, there has been a crucial need for the design and development of novel anticancer drugs that can lessen the serious health problems and unwanted side effects associated with currently used anticancer drugs. The triazole nucleus is well-recognized to possess numerous pharmacological activities, including anticancer, as revealed by various investigations on anticancer drugs and the latest research findings. OBJECTIVE: The aim of this review article is to summarise the anticancer potential of 1, 2, 3-triazole, 1, 2, 4-triazole and heterocycle-fused triazole derivatives against several human cancer cell lines, compiling research articles published between 2010 and 2021. METHODS: Data were collected from PubMed, Google scholar and Research Gate using keywords "anticancer activity of 1, 2, 3-triazole derivatives", "anticancer activity of 1, 2, 4-triazole derivatives" and "anticancer activity of heterocycle- fused triazole derivatives" and reviewed comprehensively. RESULTS: This review examines the anticancer potential of 1,2,3-triazole coupledoleanolic acid/dithiocarbamate/ pyrido[ 2,3-d] pyrimidine derivatives, 1,2,3-triazole linked pyrimidine/1,4-naphthoquinone hybrids, and 1,2,4-triazole substituted methanone derivatives, acridine-based 1,2,4-triazole derivatives, 1,2,4-thiadiazol coupled with 1,2,4- triazole and 5-ene-thiazolo[3,2-b][1,2,4]triazole-6(5H)-one derivatives against several human cancer cell lines. CONCLUSION: This review highlights the key findings in the area of cancer therapy. Triazole derivatives possess anticancer activity against various human cancer cell lines, and hence the triazole core may act as a lead molecule for the synthesis of novel anticancer drugs.


Assuntos
Antineoplásicos , Neoplasias , Acridinas , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Neoplasias/tratamento farmacológico , Estudos Prospectivos , Pirimidinas/farmacologia , Relação Estrutura-Atividade , Triazóis/farmacologia
12.
IEEE Trans Industr Inform ; 17(9): 6489-6498, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37981913

RESUMO

Rapid and precise diagnosis of COVID-19 is one of the major challenges faced by the global community to control the spread of this overgrowing pandemic. In this article, a hybrid neural network is proposed, named CovTANet, to provide an end-to-end clinical diagnostic tool for early diagnosis, lesion segmentation, and severity prediction of COVID-19 utilizing chest computer tomography (CT) scans. A multiphase optimization strategy is introduced for solving the challenges of complicated diagnosis at a very early stage of infection, where an efficient lesion segmentation network is optimized initially, which is later integrated into a joint optimization framework for the diagnosis and severity prediction tasks providing feature enhancement of the infected regions. Moreover, for overcoming the challenges with diffused, blurred, and varying shaped edges of COVID lesions with novel and diverse characteristics, a novel segmentation network is introduced, namely tri-level attention-based segmentation network. This network has significantly reduced semantic gaps in subsequent encoding-decoding stages, with immense parallelization of multiscale features for faster convergence providing considerable performance improvement over traditional networks. Furthermore, a novel tri-level attention mechanism has been introduced, which is repeatedly utilized over the network, combining channel, spatial, and pixel attention schemes for faster and efficient generalization of contextual information embedded in the feature map through feature recalibration and enhancement operations. Outstanding performances have been achieved in all three tasks through extensive experimentation on a large publicly available dataset containing 1110 chest CT-volumes, which signifies the effectiveness of the proposed scheme at the current stage of the pandemic.

13.
Nat Prod Res ; 35(6): 984-987, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31134812

RESUMO

Bioassay targeted, 80% aqueous ethanol crude extract of the fruits of Dillenia indica Linn, using the unmodified household coffee maker, afforded five compounds, namely betulinic acid (1), rhamnazin (2), dillenetin (3), luteolin-7-O-ß-D-glucoside (4) and hypolaetin-8-O-ß-D-glucoside (5). The crude extract, fractions and purified compounds were tested against MDA MB-231, A549 and HeLa cancer cell lines by MTT assay, using betulinic acid 1, as a positive control. Compound 3 showed the best activity against A549 (IC50 = 26.60 ± 2.5 µM) and HeLa cancer cell lines (IC50 =19.35 ± 0.9 µM), whereas compound 5 was found to show the best activity against MDA MB-231 (IC50 = 34.62 ± 5.2µM) cancer cell line. These highly potent anticancer compounds obtained from the fruits of D. indica may be suitable for herbal drug development and formulations.


Assuntos
Antineoplásicos/isolamento & purificação , Dilleniaceae/química , Frutas/química , Utensílios Domésticos , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Café , Humanos , Extratos Vegetais/química
14.
Eur J Med Chem ; 209: 112862, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33070079

RESUMO

The global effort to combat and contain the coronavirus disease 2019 (COVID-19) caused by the recently discovered severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is now proceeding on a war footing. The world was slow to react to the developing crisis, but once the contours of the impending calamity became evident, the different state and non-state actors have raced to put their act together. The COVID-19 pandemic has blatantly exposed the shortcomings of our healthcare system and the limitations of medical science, despite considerable advances in recent years. To effectively tackle the current pandemic, almost unprecedented in the modern age, there is an urgent need for a concerted, sustained, and coordinated effort towards the development of new diagnostics, therapeutic and vaccines, and the ramping up of the healthcare infrastructure, especially in the poorer underprivileged nations. Towards this end, researchers around the world are working tirelessly to develop new diagnostics, vaccines, and therapeutics. Efforts to develop a vaccine against COVID-19 are presently underway in several countries around the world, but a new vaccine is expected only by the end of the year-at the earliest. New drug development against COVID-19 and its approval may take even longer. Under such circumstances, drug repurposing has emerged as a realistic and effective strategy to counter the current menace, and several antiviral and antimalarial medicines are currently in different stages of clinical trials. Researchers are also experimenting with nutrients, vitamins, monoclonal antibodies, and convalescent plasma as immunity boosters against the SARS-CoV-2. This report presents a critical analysis of the global clinical trial landscape for COVID-19 with an emphasis on the therapeutic agents and vaccines currently being tested at pandemic speed.


Assuntos
Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Vacinas contra COVID-19/uso terapêutico , COVID-19/terapia , COVID-19/epidemiologia , COVID-19/prevenção & controle , Ensaios Clínicos como Assunto , Reposicionamento de Medicamentos , Humanos , Pandemias/prevenção & controle , SARS-CoV-2
15.
Future Med Chem ; 12(8): 709-739, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32208986

RESUMO

Aim: Phenanthridines are an essential class of nitrogenous heterocycles with extensive applications in medicinal chemistry. The development of efficient and eco-friendly methods for the preparation of chirally pure dihydropyrrolo[1,2-f]phenanthridines (5a-h), and their in vitro evaluation and modeling studies as potential anticancer, antioxidant and DNA cleavage agents is reported. Methodology & results: Compounds 5a-h were prepared through a facile one-pot synthesis and characterized by infrared, high resolution mass spectrometry, 1H and 13C nuclear magnetic resonance. The molecules were subjected to virtual screening and docking analysis against selected human molecular targets. Compound 5g displayed good binding properties as well as significant anticancer and DNA cleavage activity. Conclusion: Compound 5g has been identified as a potential lead candidate for further testing against additional cancer cell lines and animal models in future.


Assuntos
Antineoplásicos/farmacologia , Fenantridinas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Clivagem do DNA , DNA Bacteriano/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Fenantridinas/síntese química , Fenantridinas/química , Células Tumorais Cultivadas
16.
Eur J Med Chem ; 182: 111657, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31499361

RESUMO

The emergence of drug resistance, coupled with the issue of low tumor selectivity and toxicity is a major pitfall in cancer chemotherapy. It has necessitated the urgent need for the discovery of less toxic and more potent new anti-cancer pharmaceuticals, which target the interactive mechanisms involved in division and metastasis of cancer cells. Human DNA ligase I (hligI) plays an important role in DNA replication by linking Okazaki fragments on the lagging strand of DNA, and also participates in DNA damage repair processes. Dysregulation of the functioning of such ligases can severely impact DNA replication and repair pathways events that are generally targeted in cancer treatment. Although, several human DNA ligase inhibitors have been reported in the literature but unfortunately not a single inhibitor is currently being used in cancer chemotherapy. Results of pre-clinical studies also support the fact that human DNA ligases are an attractive target for the development of new anticancer agents which work by the selective inhibition of rapidly proliferating cancer cells. In this manuscript, we discuss, in brief, the structure, synthesis, structure-activity-relationship (SAR) and anticancer activity of recently reported hLigI inhibitors.


Assuntos
Antineoplásicos/farmacologia , DNA Ligase Dependente de ATP/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Neoplasias/tratamento farmacológico , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , DNA Ligase Dependente de ATP/metabolismo , Inibidores Enzimáticos/química , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Relação Estrutura-Atividade
17.
Future Med Chem ; 10(10): 1241-1260, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29749746

RESUMO

Dithiolethiones are five-membered sulfur-containing cyclic scaffolds that exhibit antioxidative, anti-inflammatory, antithrombic and chemotherapeutic activities. Dithiolethiones display the chemopreventive and cytoprotective effects by activating the antioxidant response element and mounting the transcription of cytoprotective phase II enzymatic machinery. In addition, several classes of dithiolethiones efficiently modulate the activities of proteins that play crucial roles in normal and cancer cells, including glutathione S-transferase, cyclooxygenases and master regulator NF-κB. The present paper summarizes synthetic aspects, pharmacological potentials and biological attributes of dithiolethiones and its derivatives. Additionally, this review concludes with a discussion on how the current state-of-the-art technologies may help in defining a structure-activity relationship of dithiolethiones, thereby facilitating the design and synthesis of potent drug candidates.


Assuntos
Anticarcinógenos/química , Tionas/química , Anticarcinógenos/farmacologia , Anticarcinógenos/uso terapêutico , Desenho de Fármacos , Humanos , Sulfeto de Hidrogênio/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/prevenção & controle , Óxido Nítrico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade , Tionas/farmacologia , Tionas/uso terapêutico
18.
Int J Ophthalmol ; 9(12): 1745-1750, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28003973

RESUMO

AIM: To evaluate the surgical scars of external dacryocystorhinostomy (DCR) cosmetically. METHODS: Totally 50 consecutive cases of primary acquired nasolacrimal duct obstruction (PANDO) were included in the study. Surgical scars were assessed by the patients and two independent observers at 2, 6 and 12wk postoperatively on the basis of visibility of the scars and still photographs respectively and were graded from 0-3. Kappa test was utilised to check the agreement of scar grading between the two observers. Wilcoxan signed ranks test was used to analyse the improvement of scar grading. RESULTS: Thirty-four (68%) patients graded their incision site as very visible (grade 3) at 2wk. At 6 and 12wk, incision site was observed as grade 3 by 7 (14%) and 1 (2%) patients respectively. Photographic evaluation of patients by 2 observers showed an average score of 2.75, 1.94 and 0.94 at 2, 6 and 12wk respectively. Change in scar grading from grade 3 to grade 0 in consecutive follow-up (2, 6 and 12wk) was found to be highly significant both for the patient as well for the observers (P<0.0001). CONCLUSION: The external DCR is a highly effective and safe procedure and in view of low percentage of cases who complained of marked scarring in the present study, thus scarring should not be the main ground for deciding the approach to DCR surgery, even in young cosmetically conscious patients.

19.
Bioorg Chem ; 59: 91-6, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25727263

RESUMO

Ligand-based and structure-based methods were applied in combination to exploit the physicochemical properties of 2,3-dideoxy hex-2-enopyranosid-4-uloses against Mycobacterium tuberculosis H37Rv. Statistically valid 3D-QSAR models with good correlation and predictive power were obtained with CoMFA steric and electrostatic fields (r(2) = 0.797, q(2) = 0.589) and CoMSIA with combined steric, electrostatic, hydrophobic and hydrogen bond acceptor fields (r(2) = 0.867, q(2) = 0.570) based on training set of 33 molecules with predictive r(2) of 0.808 and 0.890 for CoMFA and CoMSIA respectively. The results illustrate the requirement of optimal alkyl chain length at C-1 position and acceptor groups along hydroxy methyl substituent of C-6 to enhance the anti-tubercular activity of the 2,3-dideoxy hex-2-enopyranosid-4-uloses while any substitution at C-3 position exert diminishing effect on anti-tubercular activity of these enulosides. Further, homology modeling of M. tuberculosis alpha-mannosidase followed by molecular docking and molecular dynamics simulations on co-complexed models were performed to gain insight into the rationale for binding affinity of selected inhibitors with the target of interest. The comprehensive information obtained from this study will help to better understand the structural basis of biological activity of this class of molecules and guide further design of more potent analogues as anti-tubercular agents.


Assuntos
Antituberculosos/química , Antituberculosos/farmacologia , Desoxiaçúcares/química , Desoxiaçúcares/farmacologia , Mycobacterium tuberculosis/enzimologia , alfa-Manosidase/antagonistas & inibidores , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Relação Quantitativa Estrutura-Atividade , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , alfa-Manosidase/química , alfa-Manosidase/metabolismo
20.
Eur J Med Chem ; 83: 474-89, 2014 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-24992075

RESUMO

Here, we describe a molecular hybridization inspired design and synthesis of novel 6-triazolyl 2,3,6-trideoxy sugars as promising new broad-spectrum antimicrobial agents using click chemistry in key step. These compounds showed MIC between 0.39 and 50 µg/mL against different native and resistant bacteria and fungi with no toxicity. Among them, compound 29 was the most active molecule with MIC 0.78 µg/mL against Staphylococcus aureus and Klebsiella pneumoniae and 3.12 µg/mL against methicillin- and vancomycin-resistant S. aureus. Compound 26 was the most potent anti-fungal candidate with MIC 0.39 µg/mL against Trichophyton mentagrophytes. Compound 46 was found to be promising with broad-spectrum activity against both bacterial and fungal strains. The bioinformatic studies involving bacteria's protein co-crystals prompted penicillin binding protein-2 as the most likely target of these compounds.


Assuntos
Anti-Infecciosos/síntese química , Anti-Infecciosos/farmacologia , Carboidratos/química , Desenho de Fármacos , Triazóis/síntese química , Triazóis/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/toxicidade , Bactérias/efeitos dos fármacos , Domínio Catalítico , Linhagem Celular , Técnicas de Química Sintética , Química Click , Fungos/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Proteínas de Ligação às Penicilinas/química , Proteínas de Ligação às Penicilinas/metabolismo , Triazóis/química , Triazóis/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA