Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Rice (N Y) ; 17(1): 20, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38526679

RESUMO

The aus (Oryza sativa L.) varietal group comprises of aus, boro, ashina and rayada seasonal and/or field ecotypes, and exhibits unique stress tolerance traits, making it valuable for rice breeding. Despite its importance, the agro-morphological diversity and genetic control of yield traits in aus rice remain poorly understood. To address this knowledge gap, we investigated the genetic structure of 181 aus accessions using 399,115 SNP markers and evaluated them for 11 morpho-agronomic traits. Through genome-wide association studies (GWAS), we aimed to identify key loci controlling yield and plant architectural traits.Our population genetic analysis unveiled six subpopulations with strong geographical patterns. Subpopulation-specific differences were observed in most phenotypic traits. Principal component analysis (PCA) of agronomic traits showed that principal component 1 (PC1) was primarily associated with panicle traits, plant height, and heading date, while PC2 and PC3 were linked to primary grain yield traits. GWAS using PC1 identified OsSAC1 on Chromosome 7 as a significant gene influencing multiple agronomic traits. PC2-based GWAS highlighted the importance of OsGLT1 and OsPUP4/ Big Grain 3 in determining grain yield. Haplotype analysis of these genes in the 3,000 Rice Genome Panel revealed distinct genetic variations in aus rice.In summary, this study offers valuable insights into the genetic structure and phenotypic diversity of aus rice accessions. We have identified significant loci associated with essential agronomic traits, with GLT1, PUP4, and SAC1 genes emerging as key players in yield determination.

2.
Plant Physiol Biochem ; 201: 107831, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37418817

RESUMO

In the era of dire environmental fluctuations, plants undergo several stressors during their life span, which severely impact their development and overall growth in negative aspects. Abiotic stress factors, especially moisture stress i.e shortage (drought) or excess (flooding), salinity, temperature divergence (i.e. heat and cold stress), heavy metal toxicity, etc. create osmotic and ionic imbalance inside the plant cells, which ultimately lead to devastating crop yield, sometimes crop failure. Apart from the array of abiotic stresses, various biotic stress caused by pathogens, insects, and nematodes also affect production. Therefore, to combat these major challenges in order to increase production, several novel strategies have been adapted, among which the use of nanoparticles (NPs) i.e. nanotechnology is becoming an emerging tool in various facets of the current agriculture system, nowadays. This present review will elaborately depict the deployment and mechanisms of different NPs to withstand these biotic and abiotic stresses, along with a brief overview and indication of the future research works to be oriented based on the steps provided for future research in advance NPs application through the sustainable way.


Assuntos
Nanopartículas , Plantas , Agricultura , Produção Agrícola , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA