Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Microbiol ; 7: 1574, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27757107

RESUMO

The selection of an experimental animal model is of great importance in the study of bacterial virulence factors. Here, a bath infection of zebrafish larvae is proposed as an alternative model to study the virulence factors of Aeromonas hydrophila. Intraperitoneal infections in mice and trout were compared with bath infections in zebrafish larvae using specific mutants. The great advantage of this model is that bath immersion mimics the natural route of infection, and injury to the tail also provides a natural portal of entry for the bacteria. The implication of T3SS in the virulence of A. hydrophila was analyzed using the AH-1::aopB mutant. This mutant was less virulent than the wild-type strain when inoculated into zebrafish larvae, as described in other vertebrates. However, the zebrafish model exhibited slight differences in mortality kinetics only observed using invertebrate models. Infections using the mutant AH-1ΔvapA lacking the gene coding for the surface S-layer suggested that this protein was not totally necessary to the bacteria once it was inside the host, but it contributed to the inflammatory response. Only when healthy zebrafish larvae were infected did the mutant produce less mortality than the wild-type. Variations between models were evidenced using the AH-1ΔrmlB, which lacks the O-antigen lipopolysaccharide (LPS), and the AH-1ΔwahD, which lacks the O-antigen LPS and part of the LPS outer-core. Both mutants showed decreased mortality in all of the animal models, but the differences between them were only observed in injured zebrafish larvae, suggesting that residues from the LPS outer core must be important for virulence. The greatest differences were observed using the AH-1ΔFlaB-J (lacking polar flagella and unable to swim) and the AH-1::motX (non-motile but producing flagella). They were as pathogenic as the wild-type strain when injected into mice and trout, but no mortalities were registered in zebrafish larvae. This study demonstrates that zebrafish larvae can be used as a host model to assess the virulence factors of A. hydrophila. This model revealed more differences in pathogenicity than the in vitro models and enabled the detection of slight variations in pathogenesis not observed using intraperitoneal injections of mice or fish.

2.
Front Microbiol ; 7: 1219, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27540375

RESUMO

Aeromonas hydrophila is a Gram-negative opportunistic pathogen of fish and terrestrial animals. In humans, A. hydrophila mainly causes gastroenteritis, septicaemia, and tissue infections. The mechanisms of infection, the main virulence factors and the host immune response triggered by A. hydrophila have been studied in detail using murine models and adult fish. However, the great limitation of studying adult animals is that the animal must be sacrificed and its tissues/organs extracted, which prevents the study of the infectious processes in the whole living animal. Zebrafish larvae are being used for the analysis of several infectious diseases, but their use for studying the pathogenesis of A. hydrophila has never been explored. The great advantage of zebrafish larvae is their transparency during the first week after fertilization, which allows detailed descriptions of the infectious processes using in vivo imaging techniques such as differential interferential contrast (DIC) and fluorescence microscopy. Moreover, the availability of fluorescent pathogens and transgenic reporter zebrafish lines expressing fluorescent immune cells, immune marker genes or cytokines/chemokines allows the host-pathogen interactions to be characterized. The present study explores the suitability of zebrafish larvae to study the pathogenesis of A. hydrophila and the interaction mechanisms between the bacterium and the innate immune responses through an infection model using different routes for infection. We used an early-embryo infection model at 3 days post-fertilization (dpf) through the microinjection of A. hydrophila into the duct of Cuvier, caudal vein, notochord, or muscle and two bath infection models using 4 dpf healthy and injured larvae. The latter resembled the natural conditions under which A. hydrophila produces infectious diseases in animals. We compared the cellular processes after infection in each anatomical site by confocal fluorescence imaging and determined the implication of inflammatory immune genes by measuring gene expression by qPCR.

3.
Dev Comp Immunol ; 41(4): 746-55, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23999050

RESUMO

IL-22 plays a role in various disorders in mammals, including mucosal-associated infections and inflammatory diseases. No functional IL-22 studies have been conducted on non-mammals to date. In this study, recombinant IL-22 (rIL-22) from turbot was produced to investigate its effects as a bioactive molecule. The expression of several pro-inflammatory cytokines was increased after rIL-22 treatment and reduced by pre-treatment with a JAK/STAT inhibitor. The involvement of the PI3K pathway in IL-22 induction was demonstrated. rIL-22 reduced the mortality in Aeromonas salmonicida-infected turbot, while higher Aeromonas hydrophila- or LPS-induced mortality was observed when IL-22 was blocked in zebrafish embryos. IL-22 knockdown increased pro-inflammatory cytokine expression in bacteria-stimulated fish. In zebrafish, IL-22 expression was detected primarily in the myeloid innate linage. It was found during early developmental stages when the adaptive immune response is not yet functional and in rag1(-)/(-) fish that lack an adaptive immune system. Our results clarify the conserved role of IL-22 in lower vertebrates. We suggest for the first time that IL-22 constitutes a key regulator of inflammatory homeostasis even in distant species such as teleosts, which diverged from mammals more than 350 million years ago.


Assuntos
Imunidade Inata/imunologia , Inflamação/imunologia , Interleucinas/imunologia , Fosfatidilinositol 3-Quinases/imunologia , Aeromonas hydrophila/imunologia , Aeromonas salmonicida/imunologia , Animais , Doenças dos Peixes/imunologia , Peixes , Linguados/imunologia , Proteínas Recombinantes/imunologia , Transdução de Sinais , Peixe-Zebra/imunologia , Interleucina 22
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA